Nuprl Lemma : fl-eq-0-1-false

I:Top. ((0==1) ff)


Proof




Definitions occuring in Statement :  fl-eq: (x==y) face_lattice: face_lattice(I) lattice-0: 0 lattice-1: 1 bfalse: ff top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] fl-eq: (x==y) free-dml-deq: free-dml-deq(T;eq) deq-fset: deq-fset(eq) isl: isl(x) decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset decidable__assert fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: decidable__and lattice-1: 1 fset-singleton: {x} cons: [a b] bnot: ¬bb decidable__fset-member deq-fset-member: a ∈b s deq-member: x ∈b L member: t ∈ T
Lemmas referenced :  top_wf decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset decidable__assert decidable__and decidable__fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis introduction extract_by_obid

Latex:
\mforall{}I:Top.  ((0==1)  \msim{}  ff)



Date html generated: 2018_05_23-AM-08_38_36
Last ObjectModification: 2017_11_24-PM-02_45_44

Theory : cubical!type!theory


Home Index