Step
*
1
of Lemma
extend-face-term-unique
1. [I] : fset(ℕ)
2. [phi] : Point(face_lattice(I))
3. [u] : {I,phi ⊢ _:𝔽}
4. [a] : Point(face_lattice(I))
5. ∀[b:Point(face_lattice(I))]
a = b ∈ Point(face_lattice(I))
supposing a ≤ phi
∧ b ≤ phi
∧ (∀[g:{f:I ⟶ I| (phi f) = 1} ]. ((a)<g> = u(g) ∈ Point(face_lattice(I))))
∧ (∀[g:{f:I ⟶ I| (phi f) = 1} ]. ((b)<g> = u(g) ∈ Point(face_lattice(I))))
⊢ a = extend-face-term(I;phi;u) ∈ Point(face_lattice(I))
supposing a ≤ phi ∧ (∀[g:{f:I ⟶ I| (phi f) = 1} ]. ((a)<g> = u(g) ∈ Point(face_lattice(I))))
BY
{ Auto }
Latex:
Latex:
1. [I] : fset(\mBbbN{})
2. [phi] : Point(face\_lattice(I))
3. [u] : \{I,phi \mvdash{} \_:\mBbbF{}\}
4. [a] : Point(face\_lattice(I))
5. \mforall{}[b:Point(face\_lattice(I))]
a = b
supposing a \mleq{} phi
\mwedge{} b \mleq{} phi
\mwedge{} (\mforall{}[g:\{f:I {}\mrightarrow{} I| (phi f) = 1\} ]. ((a)<g> = u(g)))
\mwedge{} (\mforall{}[g:\{f:I {}\mrightarrow{} I| (phi f) = 1\} ]. ((b)<g> = u(g)))
\mvdash{} a = extend-face-term(I;phi;u) supposing a \mleq{} phi \mwedge{} (\mforall{}[g:\{f:I {}\mrightarrow{} I| (phi f) = 1\} ]. ((a)<g> = u(g)))
By
Latex:
Auto
Home
Index