Nuprl Lemma : extend-face-term-unique

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[a:Point(face_lattice(I))].
  extend-face-term(I;phi;u) ∈ Point(face_lattice(I)) 
  supposing a ≤ phi ∧ (∀[g:{f:I ⟶ I| (phi f) 1} ]. ((a)<g> u(g) ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  extend-face-term: extend-face-term(I;phi;u) face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-subset: I,psi name-morph-satisfies: (psi f) 1 fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-le: a ≤ b lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cand: c∧ B cubical-subset: I,psi rep-sub-sheaf: rep-sub-sheaf(C;X;P) names-hom: I ⟶ J cat-arrow: cat-arrow(C) pi2: snd(t) cube-cat: CubeCat name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X)
Lemmas referenced :  extend-face-term-uniqueness cubical-term_wf cubical-subset_wf subtype_rel_self I_cube_wf face-presheaf_wf small_cubical_set_subtype face-type_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf extend-face-term_wf extend-face-term-le extend-face-term-property names-hom_wf name-morph-satisfies_wf lattice-le_wf fl-morph_wf cubical-term-at_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality inhabitedIsType universeIsType applyEquality sqequalRule instantiate because_Cache lambdaEquality_alt productEquality cumulativity equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_pairFormation setIsType productIsType isectIsType equalityIsType1 setElimination rename

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[a:Point(face\_lattice(I))].
    a  =  extend-face-term(I;phi;u)  supposing  a  \mleq{}  phi  \mwedge{}  (\mforall{}[g:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].  ((a)<g>  =  u(g)))



Date html generated: 2019_11_05-AM-10_33_14
Last ObjectModification: 2018_11_08-PM-06_03_48

Theory : cubical!type!theory


Home Index