Nuprl Lemma : extend-face-term-uniqueness

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[a,b:Point(face_lattice(I))].
  b ∈ Point(face_lattice(I)) 
  supposing a ≤ phi
  ∧ b ≤ phi
  ∧ (∀[g:{f:I ⟶ I| (phi f) 1} ]. ((a)<g> u(g) ∈ Point(face_lattice(I))))
  ∧ (∀[g:{f:I ⟶ I| (phi f) 1} ]. ((b)<g> u(g) ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-subset: I,psi name-morph-satisfies: (psi f) 1 fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-le: a ≤ b lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-subset: I,psi cube-cat: CubeCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) all: x:A. B[x] member: t ∈ T top: Top uimplies: supposing a prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 names-hom: I ⟶ J cat-arrow: cat-arrow(C) pi2: snd(t) name-morph-satisfies: (psi f) 1 cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) so_apply: x[s] ext-eq: A ≡ B order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) implies:  Q uiff: uiff(P;Q) squash: T true: True guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  I_cube_pair_redex_lemma cat_arrow_triple_lemma lattice-le_wf face_lattice_wf uall_wf names-hom_wf name-morph-satisfies_wf equal_wf lattice-point_wf fl-morph_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf cubical-term-at_wf cubical-subset_wf subtype_rel_self I_cube_wf face-presheaf_wf face-type_wf cubical-term_wf small_cubical_set_subtype subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf lattice-le-order bdd-distributive-lattice-subtype-lattice face_lattice-le lattice-1_wf squash_wf true_wf iff_weakening_equal lattice-1-le-iff bdd-distributive-lattice-subtype-bdd-lattice lattice-hom-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis productEquality isectElimination hypothesisEquality applyEquality because_Cache setEquality lambdaEquality setElimination rename instantiate cumulativity independent_isectElimination independent_pairFormation productElimination independent_functionElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[a,b:Point(face\_lattice(I))].
    a  =  b 
    supposing  a  \mleq{}  phi
    \mwedge{}  b  \mleq{}  phi
    \mwedge{}  (\mforall{}[g:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].  ((a)<g>  =  u(g)))
    \mwedge{}  (\mforall{}[g:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].  ((b)<g>  =  u(g)))



Date html generated: 2018_05_23-AM-11_12_45
Last ObjectModification: 2018_05_20-PM-08_17_00

Theory : cubical!type!theory


Home Index