Nuprl Lemma : face_lattice-le
∀[I:fset(ℕ)]. ∀[x,y:Point(face_lattice(I))].
  uiff(x ≤ y;∀f:I ⟶ I. (((x)<f> = 1 ∈ Point(face_lattice(I))) ⇒ ((y)<f> = 1 ∈ Point(face_lattice(I)))))
Proof
Definitions occuring in Statement : 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
lattice-1: 1, 
lattice-le: a ≤ b, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
lattice-le: a ≤ b, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
face_lattice: face_lattice(I), 
rev_implies: P ⇐ Q, 
isl: isl(x), 
outl: outl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
false: False, 
isr: isr(x), 
outr: outr(x), 
union-deq: union-deq(A;B;a;b), 
face_lattice-deq: face_lattice-deq(), 
top: Top, 
face-lattice0: (x=0), 
fl0: (x=0), 
face-lattice1: (x=1), 
fl1: (x=1), 
sq_stable: SqStable(P), 
rev_uimplies: rev_uimplies(P;Q), 
not: ¬A, 
exists: ∃x:A. B[x], 
btrue: tt, 
cand: A c∧ B, 
names: names(I), 
nat: ℕ, 
sq_type: SQType(T), 
face-lattice-constraints: face-lattice-constraints(x), 
f-subset: xs ⊆ ys, 
or: P ∨ Q, 
name-morph-satisfies: (psi f) = 1, 
irr_face: irr_face(I;as;bs), 
respects-equality: respects-equality(S;T), 
decidable: Dec(P), 
fset-singleton: {x}, 
cons: [a / b], 
irr-face-morph: irr-face-morph(I;as;bs), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
dM-to-FL: dM-to-FL(I;z), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
dm-neg: ¬(x), 
dM1: 1, 
lattice-1: 1, 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
eq_atom: x =a y, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
nil: [], 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
lattice-join: a ∨ b, 
opposite-lattice: opposite-lattice(L), 
so_lambda: λ2x y.t[x; y], 
lattice-meet: a ∧ b, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
lattice-fset-meet: /\(s), 
empty-fset: {}, 
lattice-0: 0, 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
Lemmas referenced : 
fl-morph_wf, 
lattice-1_wf, 
face_lattice_wf, 
names-hom_wf, 
lattice-le_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lattice-1-le-iff, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-hom-le, 
face-lattice-le, 
names_wf, 
names-deq_wf, 
fset-member_wf, 
deq-fset_wf, 
union-deq_wf, 
irr-face-morph_wf, 
fset-mapfilter_wf, 
btrue_wf, 
bfalse_wf, 
assert_wf, 
istype-assert, 
isl_wf, 
isr_wf, 
face-lattice-basis, 
istype-universe, 
subtype_rel_self, 
face_lattice-deq_wf, 
fl-point-sq, 
istype-void, 
fl0_wf, 
fl1_wf, 
fset-image_wf, 
lattice-fset-meet_wf, 
decidable__equal_face_lattice, 
face_lattice-fset-join-eq-1, 
lattice-hom-fset-join, 
irr-face-morph-satisfies, 
sq_stable__assert, 
fset-disjoint_wf, 
fset-all-iff, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
assert-fset-disjoint, 
assert-fset-contains-none, 
member-fset-mapfilter, 
iff_weakening_uiff, 
exists_wf, 
subtype_base_sq, 
subtype_rel_universe1, 
set_subtype_base, 
int-deq_wf, 
istype-nat, 
le_wf, 
istype-int, 
int_subtype_base, 
fset-pair_wf, 
member-fset-singleton, 
member-fset-pair, 
fset-member_witness, 
deq_wf, 
member-fset-image-iff, 
irr_face_wf, 
all_wf, 
decidable_wf, 
bdd-lattice_wf, 
fset-extensionality, 
fset-union_wf, 
member-fset-union, 
equal-wf-T-base, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
strong-subtype-self, 
fset-singleton_wf, 
respects-equality-face-lattice-point-2, 
top_wf, 
istype-top, 
subtype_rel_union, 
decidable__fset-member, 
decidable__or, 
decidable__squash_exists_fset, 
outl_wf, 
f-subset_wf, 
lattice-hom-fset-meet, 
lattice-fset-meet-is-1, 
fl-morph-fl0, 
deq-fset-member_wf, 
eqtt_to_assert, 
assert-deq-fset-member, 
lattice-0_wf, 
face-lattice-0-not-1, 
not_wf, 
dM-to-FL_wf, 
neg-dM_inc, 
dM-to-FL-opp, 
fl0-not-1, 
fl-morph-fl1, 
dM-to-FL-dM0, 
dM-to-FL-inc, 
fl1-not-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
hypothesis, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
universeIsType, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
instantiate, 
productEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
functionIsType, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
unionEquality, 
unionElimination, 
unionIsType, 
voidElimination, 
setIsType, 
universeEquality, 
productIsType, 
promote_hyp, 
intEquality, 
inlEquality_alt, 
inrEquality_alt, 
dependent_pairFormation_alt, 
baseApply, 
closedConclusion, 
inlFormation_alt, 
inrFormation_alt, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
voidEquality, 
sqequalBase, 
equalityElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x,y:Point(face\_lattice(I))].    uiff(x  \mleq{}  y;\mforall{}f:I  {}\mrightarrow{}  I.  (((x)<f>  =  1)  {}\mRightarrow{}  ((y)<f>  =  1)))
Date html generated:
2019_11_04-PM-05_35_48
Last ObjectModification:
2018_12_13-PM-00_50_46
Theory : cubical!type!theory
Home
Index