Nuprl Lemma : face_lattice-le

[I:fset(ℕ)]. ∀[x,y:Point(face_lattice(I))].
  uiff(x ≤ y;∀f:I ⟶ I. (((x)<f> 1 ∈ Point(face_lattice(I)))  ((y)<f> 1 ∈ Point(face_lattice(I)))))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-1: 1 lattice-le: a ≤ b lattice-point: Point(l) fset: fset(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] implies:  Q subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] lattice-le: a ≤ b squash: T true: True guard: {T} iff: ⇐⇒ Q face_lattice: face_lattice(I) rev_implies:  Q isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False isr: isr(x) outr: outr(x) union-deq: union-deq(A;B;a;b) face_lattice-deq: face_lattice-deq() top: Top face-lattice0: (x=0) fl0: (x=0) face-lattice1: (x=1) fl1: (x=1) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) not: ¬A exists: x:A. B[x] btrue: tt cand: c∧ B names: names(I) nat: sq_type: SQType(T) face-lattice-constraints: face-lattice-constraints(x) f-subset: xs ⊆ ys or: P ∨ Q name-morph-satisfies: (psi f) 1 irr_face: irr_face(I;as;bs) respects-equality: respects-equality(S;T) decidable: Dec(P) fset-singleton: {x} cons: [a b] irr-face-morph: irr-face-morph(I;as;bs) bool: 𝔹 unit: Unit it: dM-to-FL: dM-to-FL(I;z) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dm-neg: ¬(x) dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) nil: [] fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) empty-fset: {} lattice-0: 0 face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
Lemmas referenced :  fl-morph_wf lattice-1_wf face_lattice_wf names-hom_wf lattice-le_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf squash_wf true_wf iff_weakening_equal lattice-1-le-iff bdd-distributive-lattice-subtype-bdd-lattice lattice-hom-le face-lattice-le names_wf names-deq_wf fset-member_wf deq-fset_wf union-deq_wf irr-face-morph_wf fset-mapfilter_wf btrue_wf bfalse_wf assert_wf istype-assert isl_wf isr_wf face-lattice-basis istype-universe subtype_rel_self face_lattice-deq_wf fl-point-sq istype-void fl0_wf fl1_wf fset-image_wf lattice-fset-meet_wf decidable__equal_face_lattice face_lattice-fset-join-eq-1 lattice-hom-fset-join irr-face-morph-satisfies sq_stable__assert fset-disjoint_wf fset-all-iff fset-contains-none_wf face-lattice-constraints_wf assert-fset-disjoint assert-fset-contains-none member-fset-mapfilter iff_weakening_uiff exists_wf subtype_base_sq subtype_rel_universe1 set_subtype_base int-deq_wf istype-nat le_wf istype-int int_subtype_base fset-pair_wf member-fset-singleton member-fset-pair fset-member_witness deq_wf member-fset-image-iff irr_face_wf all_wf decidable_wf bdd-lattice_wf fset-extensionality fset-union_wf member-fset-union equal-wf-T-base strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self fset-singleton_wf respects-equality-face-lattice-point-2 top_wf istype-top subtype_rel_union decidable__fset-member decidable__or decidable__squash_exists_fset outl_wf f-subset_wf lattice-hom-fset-meet lattice-fset-meet-is-1 fl-morph-fl0 deq-fset-member_wf eqtt_to_assert assert-deq-fset-member lattice-0_wf face-lattice-0-not-1 not_wf dM-to-FL_wf neg-dM_inc dM-to-FL-opp fl0-not-1 fl-morph-fl1 dM-to-FL-dM0 dM-to-FL-inc fl1-not-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt hypothesis equalityIstype inhabitedIsType hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry sqequalRule universeIsType dependent_functionElimination axiomEquality functionIsTypeImplies instantiate productEquality cumulativity because_Cache independent_isectElimination functionIsType productElimination independent_pairEquality isect_memberEquality_alt isectIsTypeImplies imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination unionEquality unionElimination unionIsType voidElimination setIsType universeEquality productIsType promote_hyp intEquality inlEquality_alt inrEquality_alt dependent_pairFormation_alt baseApply closedConclusion inlFormation_alt inrFormation_alt hyp_replacement dependent_set_memberEquality_alt applyLambdaEquality voidEquality sqequalBase equalityElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x,y:Point(face\_lattice(I))].    uiff(x  \mleq{}  y;\mforall{}f:I  {}\mrightarrow{}  I.  (((x)<f>  =  1)  {}\mRightarrow{}  ((y)<f>  =  1)))



Date html generated: 2019_11_04-PM-05_35_48
Last ObjectModification: 2018_12_13-PM-00_50_46

Theory : cubical!type!theory


Home Index