Nuprl Lemma : fset-mapfilter_wf

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[X:Type]. ∀[f:{x:T| ↑(P x)}  ⟶ X]. ∀[s:fset(T)].  (fset-mapfilter(f;P;s) ∈ fset(X))


Proof




Definitions occuring in Statement :  fset-mapfilter: fset-mapfilter(f;P;s) fset: fset(T) assert: b bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] fset-mapfilter: fset-mapfilter(f;P;s) prop: implies:  Q set-equal: set-equal(T;x;y) iff: ⇐⇒ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B rev_implies:  Q exists: x:A. B[x]
Lemmas referenced :  fset_wf quotient-member-eq list_wf set-equal_wf set-equal-equiv mapfilter_wf assert_wf member-mapfilter subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf all_wf iff_wf exists_wf equal_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination lambdaEquality independent_isectElimination dependent_functionElimination functionExtensionality applyEquality setEquality independent_functionElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache addLevel allFunctionality independent_pairFormation impliesFunctionality setElimination rename dependent_set_memberEquality productEquality axiomEquality isect_memberEquality functionEquality universeEquality existsFunctionality andLevelFunctionality existsLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X:Type].  \mforall{}[f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  X].  \mforall{}[s:fset(T)].
    (fset-mapfilter(f;P;s)  \mmember{}  fset(X))



Date html generated: 2017_04_17-AM-09_19_13
Last ObjectModification: 2017_02_27-PM-05_22_47

Theory : finite!sets


Home Index