Nuprl Lemma : member-mapfilter

[T:Type]
  ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.
    ∀[T':Type]
      ∀f:{x:T| (x ∈ L) c∧ (↑(P x))}  ⟶ T'. ∀x:T'.
        ((x ∈ mapfilter(f;P;L)) ⇐⇒ ∃y:T. ((y ∈ L) ∧ ((↑(P y)) c∧ (x (f y) ∈ T'))))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] cand: c∧ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T
Lemmas referenced :  member-mapfilter-witness_wf
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid hypothesis

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.
        \mforall{}[T':Type]
            \mforall{}f:\{x:T|  (x  \mmember{}  L)  c\mwedge{}  (\muparrow{}(P  x))\}    {}\mrightarrow{}  T'.  \mforall{}x:T'.
                ((x  \mmember{}  mapfilter(f;P;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  L)  \mwedge{}  ((\muparrow{}(P  y))  c\mwedge{}  (x  =  (f  y)))))



Date html generated: 2016_05_14-AM-07_50_39
Last ObjectModification: 2015_12_26-PM-04_46_02

Theory : list_1


Home Index