Nuprl Lemma : member-mapfilter
∀[T:Type]
  ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.
    ∀[T':Type]
      ∀f:{x:T| (x ∈ L) c∧ (↑(P x))}  ⟶ T'. ∀x:T'.
        ((x ∈ mapfilter(f;P;L)) 
⇐⇒ ∃y:T. ((y ∈ L) ∧ ((↑(P y)) c∧ (x = (f y) ∈ T'))))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
Lemmas referenced : 
member-mapfilter-witness_wf
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.
        \mforall{}[T':Type]
            \mforall{}f:\{x:T|  (x  \mmember{}  L)  c\mwedge{}  (\muparrow{}(P  x))\}    {}\mrightarrow{}  T'.  \mforall{}x:T'.
                ((x  \mmember{}  mapfilter(f;P;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  L)  \mwedge{}  ((\muparrow{}(P  y))  c\mwedge{}  (x  =  (f  y)))))
Date html generated:
2016_05_14-AM-07_50_39
Last ObjectModification:
2015_12_26-PM-04_46_02
Theory : list_1
Home
Index