Nuprl Lemma : member-mapfilter-witness_wf
member-mapfilter-witness() ∈ ∀[T:Type]
                               ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.
                                 ∀[T':Type]
                                   ∀f:{x:T| (x ∈ L) c∧ (↑(P x))}  ⟶ T'. ∀x:T'.
                                     ((x ∈ mapfilter(f;P;L)) ⇐⇒ ∃y:T. ((y ∈ L) ∧ ((↑(P y)) c∧ (x = (f y) ∈ T'))))
Proof
Definitions occuring in Statement : 
member-mapfilter-witness: member-mapfilter-witness(), 
mapfilter: mapfilter(f;P;L), 
l_member: (x ∈ l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
cand: A c∧ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
member-mapfilter-witness: member-mapfilter-witness(), 
member-mapfilter-univ, 
member_map_filter, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
member-map, 
member_map, 
select: L[n], 
subtract: n - m, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
ifthenelse: if b then t else f fi , 
cons: [a / b], 
nil: [], 
it: ⋅, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
member_filter, 
list_induction, 
cons_member, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable__assert, 
eq_int: (i =z j), 
btrue: tt, 
bfalse: ff, 
iff_weakening_equal, 
uiff_transitivity, 
nil_member, 
l_member-settype, 
assert_of_bnot, 
l_member_set2, 
select_member
Lemmas referenced : 
member-mapfilter-univ, 
lifting-strict-spread, 
strict4-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
lifting-strict-decide, 
top_wf, 
equal_wf, 
lifting-strict-int_eq, 
member_map_filter, 
member-map, 
member_map, 
member_filter, 
list_induction, 
cons_member, 
decidable__assert, 
iff_weakening_equal, 
uiff_transitivity, 
nil_member, 
l_member-settype, 
assert_of_bnot, 
l_member_set2, 
select_member
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
introduction, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
callbyvalueDecide, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
because_Cache
Latex:
member-mapfilter-witness()  \mmember{}  \mforall{}[T:Type]
                                                              \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.
                                                                  \mforall{}[T':Type]
                                                                      \mforall{}f:\{x:T|  (x  \mmember{}  L)  c\mwedge{}  (\muparrow{}(P  x))\}    {}\mrightarrow{}  T'.  \mforall{}x:T'.
                                                                          ((x  \mmember{}  mapfilter(f;P;L))
                                                                          \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  L)  \mwedge{}  ((\muparrow{}(P  y))  c\mwedge{}  (x  =  (f  y)))))
Date html generated:
2017_04_17-AM-07_25_54
Last ObjectModification:
2017_02_27-PM-04_04_53
Theory : list_1
Home
Index