Nuprl Lemma : member-mapfilter-univ
∀[T:Type]
  ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.
    ∀[T':Type]
      ∀f:{x:T| (x ∈ L) c∧ (↑(P x))}  ⟶ T'. ∀x:T'.
        ((x ∈ mapfilter(f;P;L)) 
⇐⇒ ∃y:T. ((y ∈ L) ∧ ((↑(P y)) c∧ (x = (f y) ∈ T'))))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
cand: A c∧ B
, 
prop: ℙ
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mapfilter: mapfilter(f;P;L)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
istype-universe, 
list_wf, 
bool_wf, 
list-subtype, 
assert_wf, 
istype-assert, 
l_member_wf, 
member_map_filter, 
l_member-settype, 
map_wf, 
filter_type, 
subtype_rel_list
Rules used in proof : 
universeEquality, 
instantiate, 
inhabitedIsType, 
setIsType, 
functionIsType, 
because_Cache, 
universeIsType, 
productIsType, 
sqequalRule, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
rename, 
setElimination, 
applyEquality, 
functionExtensionality, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
setEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
equalityIstype, 
productEquality, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
cumulativity
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.
        \mforall{}[T':Type]
            \mforall{}f:\{x:T|  (x  \mmember{}  L)  c\mwedge{}  (\muparrow{}(P  x))\}    {}\mrightarrow{}  T'.  \mforall{}x:T'.
                ((x  \mmember{}  mapfilter(f;P;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  L)  \mwedge{}  ((\muparrow{}(P  y))  c\mwedge{}  (x  =  (f  y)))))
Date html generated:
2019_10_15-AM-10_21_57
Last ObjectModification:
2019_08_05-PM-02_08_39
Theory : list_1
Home
Index