Nuprl Lemma : member-mapfilter-univ
∀[T:Type]
∀L:T List. ∀P:{x:T| (x ∈ L)} ⟶ 𝔹.
∀[T':Type]
∀f:{x:T| (x ∈ L) c∧ (↑(P x))} ⟶ T'. ∀x:T'.
((x ∈ mapfilter(f;P;L))
⇐⇒ ∃y:T. ((y ∈ L) ∧ ((↑(P y)) c∧ (x = (f y) ∈ T'))))
Proof
Definitions occuring in Statement :
mapfilter: mapfilter(f;P;L)
,
l_member: (x ∈ l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
cand: A c∧ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
cand: A c∧ B
,
prop: ℙ
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
exists: ∃x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
mapfilter: mapfilter(f;P;L)
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
Lemmas referenced :
istype-universe,
list_wf,
bool_wf,
list-subtype,
assert_wf,
istype-assert,
l_member_wf,
member_map_filter,
l_member-settype,
map_wf,
filter_type,
subtype_rel_list
Rules used in proof :
universeEquality,
instantiate,
inhabitedIsType,
setIsType,
functionIsType,
because_Cache,
universeIsType,
productIsType,
sqequalRule,
independent_pairFormation,
dependent_set_memberEquality_alt,
rename,
setElimination,
applyEquality,
functionExtensionality,
dependent_functionElimination,
hypothesis,
hypothesisEquality,
setEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
productElimination,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
equalityIstype,
productEquality,
equalityIsType1,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
cumulativity
Latex:
\mforall{}[T:Type]
\mforall{}L:T List. \mforall{}P:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbB{}.
\mforall{}[T':Type]
\mforall{}f:\{x:T| (x \mmember{} L) c\mwedge{} (\muparrow{}(P x))\} {}\mrightarrow{} T'. \mforall{}x:T'.
((x \mmember{} mapfilter(f;P;L)) \mLeftarrow{}{}\mRightarrow{} \mexists{}y:T. ((y \mmember{} L) \mwedge{} ((\muparrow{}(P y)) c\mwedge{} (x = (f y)))))
Date html generated:
2019_10_15-AM-10_21_57
Last ObjectModification:
2019_08_05-PM-02_08_39
Theory : list_1
Home
Index