Nuprl Lemma : respects-equality-face-lattice-point-2

[I,J:fset(ℕ)].  respects-equality(fset(fset(names(I) names(I)));Point(face_lattice(J)))


Proof




Definitions occuring in Statement :  face_lattice: face_lattice(I) names: names(I) lattice-point: Point(l) fset: fset(T) nat: respects-equality: respects-equality(S;T) uall: [x:A]. B[x] union: left right
Definitions unfolded in proof :  face_lattice: face_lattice(I) lattice-point: Point(l) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] member: t ∈ T top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] implies:  Q uimplies: supposing a names: names(I) subtype_rel: A ⊆B nat: respects-equality: respects-equality(S;T)
Lemmas referenced :  rec_select_update_lemma istype-void respects-equality-set fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf respects-equality-fset respects-equality-union subtype-base-respects-equality nat_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self set_subtype_base istype-nat int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isect_memberFormation_alt isectElimination unionEquality hypothesisEquality lambdaEquality_alt productEquality unionIsType universeIsType because_Cache independent_functionElimination independent_isectElimination setEquality applyEquality intEquality natural_numberEquality axiomEquality functionIsTypeImplies inhabitedIsType isectIsTypeImplies

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    respects-equality(fset(fset(names(I)  +  names(I)));Point(face\_lattice(J)))



Date html generated: 2019_11_04-PM-05_32_47
Last ObjectModification: 2018_12_13-PM-00_42_28

Theory : cubical!type!theory


Home Index