Nuprl Lemma : respects-equality-union

[T1,T2,S1,S2:Type].  (respects-equality(S1;T1)  respects-equality(S2;T2)  respects-equality(S1 S2;T1 T2))


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q respects-equality: respects-equality(S;T) all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a top: Top or: P ∨ Q and: P ∧ Q cand: c∧ B outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) true: True false: False outr: outr(x) bnot: ¬bb btrue: tt
Lemmas referenced :  union-eta subtype_rel_union top_wf istype-void outl_wf subtype_base_sq int_subtype_base subtype_rel-equal equal_functionality_wrt_subtype_rel2 outr_wf istype-base respects-equality_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin equalityTransitivity hypothesis equalitySymmetry applyEquality isectElimination hypothesisEquality because_Cache independent_isectElimination Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  sqequalRule unionElimination Error :inlEquality_alt,  Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :productIsType,  Error :equalityIstype,  baseApply closedConclusion baseClosed sqequalBase applyLambdaEquality setElimination rename productElimination promote_hyp natural_numberEquality instantiate cumulativity intEquality independent_functionElimination unionEquality Error :inrEquality_alt,  Error :unionIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T1,T2,S1,S2:Type].
    (respects-equality(S1;T1)  {}\mRightarrow{}  respects-equality(S2;T2)  {}\mRightarrow{}  respects-equality(S1  +  S2;T1  +  T2))



Date html generated: 2019_06_20-AM-11_20_02
Last ObjectModification: 2018_11_23-PM-02_15_26

Theory : union


Home Index