Nuprl Lemma : union-eta

d:Top Top. ((d inl outl(d)) ∨ (d inr outr(d) ))


Proof




Definitions occuring in Statement :  outr: outr(x) outl: outl(x) top: Top all: x:A. B[x] or: P ∨ Q inr: inr  inl: inl x union: left right sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] outl: outl(x) outr: outr(x) member: t ∈ T or: P ∨ Q uall: [x:A]. B[x] top: Top
Lemmas referenced :  top_wf istype-inl-sqeq-inr istype-void istype-inr-sqeq-inl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  unionElimination thin sqequalRule Error :unionIsType,  Error :universeIsType,  cut introduction extract_by_obid hypothesis because_Cache Error :inlFormation_alt,  sqequalHypSubstitution isectElimination hypothesisEquality Error :isect_memberEquality_alt,  voidElimination Error :inrFormation_alt

Latex:
\mforall{}d:Top  +  Top.  ((d  \msim{}  inl  outl(d))  \mvee{}  (d  \msim{}  inr  outr(d)  ))



Date html generated: 2019_06_20-AM-11_20_01
Last ObjectModification: 2018_10_15-PM-11_28_17

Theory : union


Home Index