Nuprl Lemma : istype-inr-sqeq-inl

[a,b:Top].  istype(inr b  inl a)


Proof




Definitions occuring in Statement :  istype: istype(T) uall: [x:A]. B[x] top: Top inr: inr  inl: inl x sqequal: t
Definitions unfolded in proof :  false: False not: ¬A uall: [x:A]. B[x] member: t ∈ T squash: T prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q true: True subtype_rel: A ⊆B
Lemmas referenced :  member_wf squash_wf true_wf istype-universe not-inl-sqeq-inr istype-sqequal equal_wf subtype_rel_self istype-top
Rules used in proof :  voidElimination independent_functionElimination sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  pointwiseFunctionality sqequalExtensionalEquality cut applyEquality thin instantiate Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality independent_pairFormation Error :lambdaFormation_alt,  because_Cache sqequalRule baseApply closedConclusion baseClosed imageMemberEquality natural_numberEquality Error :inhabitedIsType

Latex:
\mforall{}[a,b:Top].    istype(inr  b    \msim{}  inl  a)



Date html generated: 2019_06_20-PM-01_04_24
Last ObjectModification: 2019_06_20-PM-01_01_40

Theory : union


Home Index