Nuprl Lemma : not-inl-sqeq-inr

[a,b:Base].  (inl inr ))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] not: ¬A inr: inr  inl: inl x base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False prop:
Lemmas referenced :  false_wf not_zero_sqequal_one not_wf base_sq base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution voidElimination lemma_by_obid hypothesis addLevel independent_functionElimination sqequalRule because_Cache isectElimination sqequalIntensionalEquality lambdaEquality dependent_functionElimination hypothesisEquality isect_memberEquality

Latex:
\mforall{}[a,b:Base].    (\mneg{}(inl  a  \msim{}  inr  b  ))



Date html generated: 2016_05_13-PM-03_20_34
Last ObjectModification: 2015_12_26-AM-09_10_46

Theory : union


Home Index