Nuprl Lemma : not-inl-sqeq-inr
∀[a,b:Base].  (¬(inl a ~ inr b ))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
inr: inr x 
, 
inl: inl x
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
false_wf, 
not_zero_sqequal_one, 
not_wf, 
base_sq, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
voidElimination, 
lemma_by_obid, 
hypothesis, 
addLevel, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
isectElimination, 
sqequalIntensionalEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b:Base].    (\mneg{}(inl  a  \msim{}  inr  b  ))
Date html generated:
2016_05_13-PM-03_20_34
Last ObjectModification:
2015_12_26-AM-09_10_46
Theory : union
Home
Index