Nuprl Lemma : istype-inl-sqeq-inr

[a,b:Top].  istype(inl inr )


Proof




Definitions occuring in Statement :  istype: istype(T) uall: [x:A]. B[x] top: Top inr: inr  inl: inl x sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False rev_implies:  Q true: True subtype_rel: A ⊆B
Lemmas referenced :  member_wf squash_wf true_wf istype-universe not-inl-sqeq-inr istype-sqequal equal_wf subtype_rel_self istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  pointwiseFunctionality sqequalExtensionalEquality cut applyEquality thin instantiate Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality independent_pairFormation Error :lambdaFormation_alt,  sqequalRule independent_functionElimination voidElimination because_Cache baseApply closedConclusion baseClosed imageMemberEquality natural_numberEquality Error :inhabitedIsType

Latex:
\mforall{}[a,b:Top].    istype(inl  a  \msim{}  inr  b  )



Date html generated: 2019_06_20-AM-11_19_58
Last ObjectModification: 2018_10_21-AM-09_30_48

Theory : union


Home Index