Nuprl Lemma : respects-equality-fset
∀[A,B:Type].  respects-equality(fset(A);fset(B)) supposing respects-equality(A;B)
Proof
Definitions occuring in Statement : 
fset: fset(T)
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
fset: fset(T)
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
respects-equality: respects-equality(S;T)
, 
prop: ℙ
, 
set-equal: set-equal(T;x;y)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
ge: i ≥ j 
Lemmas referenced : 
respects-equality-quotient, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
respects-equality-list, 
respects-equality_wf, 
istype-universe, 
respects-equality-list-type, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
select_member, 
nat_properties, 
change-equality-type, 
l_member_wf, 
istype-le, 
istype-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
Error :universeIsType, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :equalityIstype, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
universeEquality, 
natural_numberEquality, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
imageElimination, 
equalitySymmetry, 
equalityTransitivity, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType
Latex:
\mforall{}[A,B:Type].    respects-equality(fset(A);fset(B))  supposing  respects-equality(A;B)
Date html generated:
2019_06_20-PM-01_58_34
Last ObjectModification:
2018_12_19-PM-05_04_04
Theory : finite!sets
Home
Index