Nuprl Lemma : respects-equality-fset

[A,B:Type].  respects-equality(fset(A);fset(B)) supposing respects-equality(A;B)


Proof




Definitions occuring in Statement :  fset: fset(T) uimplies: supposing a respects-equality: respects-equality(S;T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a fset: fset(T) member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B respects-equality: respects-equality(S;T) prop: set-equal: set-equal(T;x;y) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) nat: ge: i ≥ 
Lemmas referenced :  respects-equality-quotient list_wf set-equal_wf set-equal-equiv respects-equality-list respects-equality_wf istype-universe respects-equality-list-type int_seg_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma select_member nat_properties change-equality-type l_member_wf istype-le istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :universeIsType,  independent_isectElimination Error :lambdaFormation_alt,  independent_pairFormation Error :equalityIstype,  because_Cache dependent_functionElimination independent_functionElimination instantiate universeEquality natural_numberEquality setElimination rename productElimination unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination imageElimination equalitySymmetry equalityTransitivity Error :dependent_set_memberEquality_alt,  Error :productIsType

Latex:
\mforall{}[A,B:Type].    respects-equality(fset(A);fset(B))  supposing  respects-equality(A;B)



Date html generated: 2019_06_20-PM-01_58_34
Last ObjectModification: 2018_12_19-PM-05_04_04

Theory : finite!sets


Home Index