Nuprl Lemma : change-equality-type

[A,B:Type].  (respects-equality(A;B)  (∀x,y:A.  ((x y ∈ A)  (x ∈ B)  (x y ∈ B))))


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T respects-equality: respects-equality(S;T)
Lemmas referenced :  respects-equality_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalRule Error :equalityIstype,  Error :universeIsType,  hypothesisEquality cut hypothesis sqequalHypSubstitution dependent_functionElimination thin independent_functionElimination because_Cache introduction extract_by_obid isectElimination Error :inhabitedIsType,  universeEquality pointwiseFunctionalityForEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:Type].    (respects-equality(A;B)  {}\mRightarrow{}  (\mforall{}x,y:A.    ((x  =  y)  {}\mRightarrow{}  (x  \mmember{}  B)  {}\mRightarrow{}  (x  =  y))))



Date html generated: 2019_06_20-AM-11_13_51
Last ObjectModification: 2018_11_28-PM-11_36_14

Theory : core_2


Home Index