Nuprl Lemma : respects-equality-list-type
∀[A,B:Type].  ∀L:A List. ((∀i:ℕ||L||. (L[i] ∈ B)) 
⇒ (L ∈ B List)) supposing respects-equality(A;B)
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
select: L[n]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
respects-equality: respects-equality(S;T)
, 
nat_plus: ℕ+
, 
true: True
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
respects-equality_wf, 
istype-universe, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
istype-void, 
colength_wf_list, 
istype-false, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
spread_cons_lemma, 
sq_stable__le, 
add-associates, 
istype-int, 
add-commutes, 
add-swap, 
zero-add, 
le_weakening2, 
istype-nat, 
list_wf, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
nil_wf, 
int_seg_wf, 
cons_wf, 
length_wf, 
select_wf, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
add-member-int_seg2, 
decidable__le, 
subtract_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
non_neg_length, 
istype-sqequal, 
decidable__lt, 
select-cons-tl, 
not-lt-2, 
le-add-cancel, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :isect_memberEquality_alt, 
Error :equalityIstype, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
cumulativity, 
intEquality, 
closedConclusion, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
applyEquality, 
minusEquality, 
baseApply, 
sqequalBase, 
Error :functionIsType, 
Error :productIsType, 
addEquality, 
Error :dependent_pairFormation_alt
Latex:
\mforall{}[A,B:Type].    \mforall{}L:A  List.  ((\mforall{}i:\mBbbN{}||L||.  (L[i]  \mmember{}  B))  {}\mRightarrow{}  (L  \mmember{}  B  List))  supposing  respects-equality(A;B)
Date html generated:
2019_06_20-PM-00_40_35
Last ObjectModification:
2018_11_28-PM-00_32_55
Theory : list_0
Home
Index