Nuprl Lemma : face-lattice-le

T:Type. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).
  (x ≤ ⇐⇒ ∀s:fset(T T). (s ∈  (↓∃t:fset(T T). (t ∈ y ∧ t ⊆ s))))


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-le: a ≤ b lattice-point: Point(l) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T implies:  Q and: P ∧ Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] top: Top iff: ⇐⇒ Q and: P ∧ Q implies:  Q guard: {T} squash: T prop: rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a fset-ac-le: fset-ac-le(eq;ac1;ac2) sq_stable: SqStable(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) not: ¬A cand: c∧ B false: False fset-member: a ∈ s assert: b ifthenelse: if then else fi  deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: bfalse: ff
Lemmas referenced :  face-lattice-le-1 fl-point-sq istype-void fset-ac-le-implies2 union-deq_wf fset-member_wf fset_wf deq-fset_wf fset-ac-le_wf squash_wf f-subset_wf lattice-le_wf face-lattice_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf istype-universe fset-all-iff iff_weakening_uiff fset-all_wf bnot_wf fset-null_wf fset-filter_wf deq-f-subset_wf isect_wf assert_wf assert_witness sq_stable__assert assert_of_bnot equal-wf-T-base assert-fset-null istype-assert member-fset-filter assert-deq-f-subset
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination isect_memberEquality_alt voidElimination productElimination independent_pairFormation unionEquality setElimination rename because_Cache independent_functionElimination imageElimination sqequalRule imageMemberEquality baseClosed universeIsType functionIsType productEquality applyEquality promote_hyp inhabitedIsType instantiate lambdaEquality_alt cumulativity equalityTransitivity equalitySymmetry independent_isectElimination universeEquality isect_memberFormation_alt isectIsTypeImplies equalityIsType3 hyp_replacement applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).
    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}s:fset(T  +  T).  (s  \mmember{}  x  {}\mRightarrow{}  (\mdownarrow{}\mexists{}t:fset(T  +  T).  (t  \mmember{}  y  \mwedge{}  t  \msubseteq{}  s))))



Date html generated: 2019_10_31-AM-07_22_24
Last ObjectModification: 2018_11_10-PM-00_15_49

Theory : lattices


Home Index