Nuprl Lemma : fl-point-sq
∀[T,eq:Top].
  (Point(face-lattice(T;eq)) ~ {ac:fset(fset(T + T))| 
                                (↑fset-antichain(union-deq(T;T;eq;eq);ac))
                                ∧ fset-all(ac;a.fset-contains-none(union-deq(T;T;eq;
                                                                             eq);a;x.face-lattice-constraints(x)))} )
Proof
Definitions occuring in Statement : 
face-lattice: face-lattice(T;eq)
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
lattice-point: Point(l)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
fset-all: fset-all(s;x.P[x])
, 
fset: fset(T)
, 
union-deq: union-deq(A;B;a;b)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
union: left + right
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-lattice: face-lattice(T;eq)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
top_wf, 
free-dlwc-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq:Top].
    (Point(face-lattice(T;eq)) 
    \msim{}  \{ac:fset(fset(T  +  T))| 
          (\muparrow{}fset-antichain(union-deq(T;T;eq;eq);ac))
          \mwedge{}  fset-all(ac;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))\}  )
Date html generated:
2016_05_18-AM-11_39_20
Last ObjectModification:
2016_01_18-PM-11_31_19
Theory : lattices
Home
Index