Nuprl Lemma : face-lattice-le-1
∀T:Type. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).  (x ≤ y 
⇐⇒ fset-ac-le(union-deq(T;T;eq;eq);x;y))
Proof
Definitions occuring in Statement : 
face-lattice: face-lattice(T;eq)
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
face-lattice: face-lattice(T;eq)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
deq_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face-lattice_wf, 
lattice-point_wf, 
face-lattice-constraints_wf, 
union-deq_wf, 
free-dlwc-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
cumulativity, 
applyEquality, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).
    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(union-deq(T;T;eq;eq);x;y))
Date html generated:
2016_05_18-AM-11_40_20
Last ObjectModification:
2016_01_19-PM-07_12_28
Theory : lattices
Home
Index