Nuprl Lemma : member-fset-mapfilter

āˆ€[T:Type]. āˆ€[eqT:EqDecider(T)]. āˆ€[P:T āŸ¶ š”¹]. āˆ€[X:Type]. āˆ€[eqX:EqDecider(X)]. āˆ€[f:{x:T| ā†‘(P x)}  āŸ¶ X]. āˆ€[s:fset(T)].
āˆ€[x:X].
  uiff(x āˆˆ fset-mapfilter(f;P;s);ā†“āˆƒy:T. (y āˆˆ s āˆ§ (ā†‘(P y)) āˆ§ (x (f y) āˆˆ X)))


Proof




Definitions occuring in Statement :  fset-mapfilter: fset-mapfilter(f;P;s) fset-member: a āˆˆ s fset: fset(T) deq: EqDecider(T) assert: ā†‘b bool: š”¹ uiff: uiff(P;Q) uall: āˆ€[x:A]. B[x] exists: āˆƒx:A. B[x] squash: ā†“T and: P āˆ§ Q set: {x:A| B[x]}  apply: a function: x:A āŸ¶ B[x] universe: Type equal: t āˆˆ T
Definitions unfolded in proof :  uall: āˆ€[x:A]. B[x] member: t āˆˆ T uiff: uiff(P;Q) and: P āˆ§ Q uimplies: supposing a squash: ā†“T prop: ā„™ implies: ā‡’ Q exists: āˆƒx:A. B[x] quotient: x,y:A//B[x; y] so_apply: x[s] so_lambda: Ī»2x.t[x] fset: fset(T) cand: cāˆ§ B subtype_rel: A āŠ†B iff: ā‡ā‡’ Q all: āˆ€x:A. B[x] fset-member: a āˆˆ s fset-mapfilter: fset-mapfilter(f;P;s) rev_implies: ā‡ Q decidable: Dec(P) or: P āˆØ Q sq_type: SQType(T) guard: {T} true: True false: False not: Ā¬A istype: istype(T)
Lemmas referenced :  fset-member_wf fset-mapfilter_wf fset-member_witness squash_wf assert_wf equal_wf istype-assert fset_wf deq_wf bool_wf istype-universe set-equal_wf list_wf equal-wf-base exists_wf set_wf subtype_rel_self l_member_wf subtype_rel_dep_function member-mapfilter mapfilter_wf assert-deq-member list_subtype_fset decidable__fset-member subtype_base_sq int_subtype_base set-equal-reflex
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed Error :universeIsType,  extract_by_obid isectElimination independent_functionElimination productEquality applyEquality Error :dependent_set_memberEquality_alt,  productElimination independent_pairEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  because_Cache Error :functionIsType,  Error :setIsType,  instantiate universeEquality pertypeElimination dependent_set_memberEquality setEquality functionExtensionality lambdaEquality cumulativity pointwiseFunctionalityForEquality lambdaFormation rename setElimination independent_isectElimination equalitySymmetry equalityTransitivity dependent_functionElimination dependent_pairFormation unionElimination intEquality natural_numberEquality voidElimination promote_hyp Error :lambdaFormation_alt,  pointwiseFunctionality Error :lambdaEquality_alt,  Error :productIsType,  Error :equalityIsType4,  Error :dependent_pairFormation_alt,  Error :equalityIstype

Latex:
\mforall{}[T:Type].  \mforall{}[eqT:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X:Type].  \mforall{}[eqX:EqDecider(X)].
\mforall{}[f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  X].  \mforall{}[s:fset(T)].  \mforall{}[x:X].
    uiff(x  \mmember{}  fset-mapfilter(f;P;s);\mdownarrow{}\mexists{}y:T.  (y  \mmember{}  s  \mwedge{}  (\muparrow{}(P  y))  \mwedge{}  (x  =  (f  y))))



Date html generated: 2019_06_20-PM-01_58_50
Last ObjectModification: 2018_11_23-PM-02_42_36

Theory : finite!sets


Home Index