Nuprl Lemma : lattice-fset-meet-is-1

[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s:fset(Point(l))].
  uiff(/\(s) 1 ∈ Point(l);∀x:Point(l). (x ∈  (x 1 ∈ Point(l))))


Proof




Definitions occuring in Statement :  lattice-fset-meet: /\(s) bdd-lattice: BoundedLattice lattice-1: 1 lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lattice-fset-meet-is-glb fset-member_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype equal_wf lattice-fset-meet_wf decidable-equal-deq lattice-1_wf all_wf fset_wf deq_wf bdd-lattice_wf lattice-le_wf squash_wf true_wf iff_weakening_equal lattice-1-le-iff le-lattice-1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_pairFormation lambdaFormation applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity because_Cache independent_isectElimination dependent_functionElimination axiomEquality independent_functionElimination setElimination rename functionEquality independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s:fset(Point(l))].
    uiff(/\mbackslash{}(s)  =  1;\mforall{}x:Point(l).  (x  \mmember{}  s  {}\mRightarrow{}  (x  =  1)))



Date html generated: 2017_10_05-AM-00_34_00
Last ObjectModification: 2017_07_28-AM-09_14_06

Theory : lattices


Home Index