Nuprl Lemma : face-lattice-basis

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(face-lattice(T;eq))].
  (x \/(λs./\(λu.{{u}}"(s))"(x)) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-fset-join: \/(s) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-singleton: {x} union-deq: union-deq(A;B;a;b) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] face-lattice: face-lattice(T;eq) prop: squash: T top: Top implies:  Q and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False true: True bdd-distributive-lattice: BoundedDistributiveLattice face-lattice0: (x=0) face-lattice1: (x=1) not: ¬A face-lattice-constraints: face-lattice-constraints(x) fset-singleton: {x} fset-filter: {x ∈ P[x]} fset-null: fset-null(s) isl: isl(x) f-subset: xs ⊆ ys rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  free-dlwc-basis union-deq_wf face-lattice-constraints_wf equal_wf squash_wf true_wf fl-point-sq lattice-fset-join_wf face-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf fset_wf set_wf assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf deq-fset_wf strong-subtype-deq-subtype strong-subtype-set2 lattice-fset-meet_wf fset-null_wf fset-filter_wf deq-f-subset_wf all_wf iff_wf fset-singleton_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__equal_set decidable__equal_fset decidable__equal_union decidable-equal-deq lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf deq_wf face-lattice0_wf face-lattice1_wf filter_cons_lemma filter_nil_lemma fset-pair_wf bfalse_wf and_wf isl_wf btrue_wf btrue_neq_bfalse assert-deq-f-subset not_wf f-subset_wf false_wf equal-wf-T-base null_nil_lemma member-fset-singleton member-fset-pair
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality hyp_replacement equalitySymmetry applyEquality imageElimination equalityTransitivity because_Cache isect_memberEquality voidElimination voidEquality setElimination rename independent_functionElimination productElimination productEquality independent_isectElimination setEquality functionExtensionality lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate imageMemberEquality baseClosed natural_numberEquality universeEquality inlEquality inrEquality dependent_set_memberEquality independent_pairFormation applyLambdaEquality addLevel impliesFunctionality functionEquality inrFormation inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(face-lattice(T;eq))].    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}u.\{\{u\}\}"(s))"(x)))



Date html generated: 2017_10_05-AM-00_40_21
Last ObjectModification: 2017_07_28-AM-09_16_00

Theory : lattices


Home Index