Nuprl Lemma : decidable__equal_union
∀[A,B:Type].  ((∀x,y:A.  Dec(x = y ∈ A)) 
⇒ (∀u,v:B.  Dec(u = v ∈ B)) 
⇒ (∀x,y:A + B.  Dec(x = y ∈ (A + B))))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
true: True
Lemmas referenced : 
all_wf, 
decidable_wf, 
equal_wf, 
not_wf, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
unionElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
inlFormation, 
inlEquality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
inrFormation, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
instantiate, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
promote_hyp, 
inrEquality
Latex:
\mforall{}[A,B:Type].    ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}u,v:B.    Dec(u  =  v))  {}\mRightarrow{}  (\mforall{}x,y:A  +  B.    Dec(x  =  y)))
Date html generated:
2016_10_21-AM-09_36_05
Last ObjectModification:
2016_07_12-AM-05_00_04
Theory : union
Home
Index