Nuprl Lemma : decidable__equal_union

[A,B:Type].  ((∀x,y:A.  Dec(x y ∈ A))  (∀u,v:B.  Dec(u v ∈ B))  (∀x,y:A B.  Dec(x y ∈ (A B))))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q guard: {T} not: ¬A false: False uimplies: supposing a sq_type: SQType(T) true: True
Lemmas referenced :  all_wf decidable_wf equal_wf not_wf subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation unionElimination thin unionEquality cumulativity hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality hypothesis universeEquality dependent_functionElimination inlFormation inlEquality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  inrFormation independent_functionElimination voidElimination because_Cache applyEquality natural_numberEquality instantiate intEquality independent_isectElimination equalityTransitivity promote_hyp inrEquality

Latex:
\mforall{}[A,B:Type].    ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}u,v:B.    Dec(u  =  v))  {}\mRightarrow{}  (\mforall{}x,y:A  +  B.    Dec(x  =  y)))



Date html generated: 2016_10_21-AM-09_36_05
Last ObjectModification: 2016_07_12-AM-05_00_04

Theory : union


Home Index