Nuprl Lemma : decidable__equal_face_lattice
∀[I:fset(ℕ)]. ∀x,y:Point(face_lattice(I)). Dec(x = y ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement :
face_lattice: face_lattice(I)
,
lattice-point: Point(l)
,
fset: fset(T)
,
nat: ℕ
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
guard: {T}
Lemmas referenced :
deq-implies,
lattice-point_wf,
face_lattice_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
fset_wf,
nat_wf,
face_lattice-deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
instantiate,
lambdaEquality,
productEquality,
cumulativity,
universeEquality,
because_Cache,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})]. \mforall{}x,y:Point(face\_lattice(I)). Dec(x = y)
Date html generated:
2017_02_21-AM-10_32_06
Last ObjectModification:
2017_02_02-PM-01_23_02
Theory : cubical!type!theory
Home
Index