Nuprl Lemma : fset-disjoint_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:fset(T)].  (fset-disjoint(eq;as;bs) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
fset-disjoint: fset-disjoint(eq;as;bs)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset-disjoint: fset-disjoint(eq;as;bs)
Lemmas referenced : 
fset-null_wf, 
fset-intersection_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:fset(T)].    (fset-disjoint(eq;as;bs)  \mmember{}  \mBbbB{})
Date html generated:
2017_02_20-AM-10_49_16
Last ObjectModification:
2017_02_03-AM-10_53_14
Theory : finite!sets
Home
Index