Nuprl Lemma : fset-disjoint_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:fset(T)].  (fset-disjoint(eq;as;bs) ∈ 𝔹)


Proof




Definitions occuring in Statement :  fset-disjoint: fset-disjoint(eq;as;bs) fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-disjoint: fset-disjoint(eq;as;bs)
Lemmas referenced :  fset-null_wf fset-intersection_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:fset(T)].    (fset-disjoint(eq;as;bs)  \mmember{}  \mBbbB{})



Date html generated: 2017_02_20-AM-10_49_16
Last ObjectModification: 2017_02_03-AM-10_53_14

Theory : finite!sets


Home Index