Nuprl Lemma : fset-intersection_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:fset(T)].  (a ⋂ b ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-intersection: a ⋂ b fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  fset-intersection: a ⋂ b uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  fset-filter_wf deq-fset-member_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(T)].    (a  \mcap{}  b  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_40_02
Last ObjectModification: 2015_12_26-PM-06_41_19

Theory : finite!sets


Home Index