Nuprl Lemma : irr-face-morph-satisfies
∀[I:fset(ℕ)]. ∀[as,bs:fset(names(I))].
  (irr_face(I;as;bs) irr-face-morph(I;as;bs)) = 1 supposing ↑fset-disjoint(NamesDeq;as;bs)
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1
, 
irr-face-morph: irr-face-morph(I;as;bs)
, 
irr_face: irr_face(I;as;bs)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
fset-disjoint: fset-disjoint(eq;as;bs)
, 
fset: fset(T)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
name-morph-satisfies: (psi f) = 1
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
irr-face-morph: irr-face-morph(I;as;bs)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
assert_wf, 
fset-disjoint_wf, 
names_wf, 
names-deq_wf, 
fset_wf, 
nat_wf, 
irr-face-morph_wf, 
deq-fset-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-fset-member, 
dM0_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
fset-member_wf, 
dM1_wf, 
satisfies-irr-face, 
assert-fset-disjoint
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].
    (irr\_face(I;as;bs)  irr-face-morph(I;as;bs))  =  1  supposing  \muparrow{}fset-disjoint(NamesDeq;as;bs)
Date html generated:
2018_05_23-AM-08_39_18
Last ObjectModification:
2017_11_09-AM-11_57_27
Theory : cubical!type!theory
Home
Index