Nuprl Lemma : irr-face-morph-satisfies

[I:fset(ℕ)]. ∀[as,bs:fset(names(I))].
  (irr_face(I;as;bs) irr-face-morph(I;as;bs)) supposing ↑fset-disjoint(NamesDeq;as;bs)


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 irr-face-morph: irr-face-morph(I;as;bs) irr_face: irr_face(I;as;bs) names-deq: NamesDeq names: names(I) fset-disjoint: fset-disjoint(eq;as;bs) fset: fset(T) nat: assert: b uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a name-morph-satisfies: (psi f) 1 prop: and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q irr-face-morph: irr-face-morph(I;as;bs) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  assert_wf fset-disjoint_wf names_wf names-deq_wf fset_wf nat_wf irr-face-morph_wf deq-fset-member_wf bool_wf eqtt_to_assert assert-deq-fset-member dM0_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot fset-member_wf dM1_wf satisfies-irr-face assert-fset-disjoint
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomEquality hypothesis extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination independent_pairFormation

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].
    (irr\_face(I;as;bs)  irr-face-morph(I;as;bs))  =  1  supposing  \muparrow{}fset-disjoint(NamesDeq;as;bs)



Date html generated: 2018_05_23-AM-08_39_18
Last ObjectModification: 2017_11_09-AM-11_57_27

Theory : cubical!type!theory


Home Index