Nuprl Lemma : assert-fset-disjoint
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:fset(T)].  uiff(↑fset-disjoint(eq;as;bs);∀x:T. (¬(x ∈ as ∧ x ∈ bs)))
Proof
Definitions occuring in Statement : 
fset-disjoint: fset-disjoint(eq;as;bs)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
fset-disjoint: fset-disjoint(eq;as;bs)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
fset-member: a ∈ s
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
deq-member: x ∈b L
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
bfalse: ff
, 
top: Top
Lemmas referenced : 
fset-member_wf, 
equal-wf-T-base, 
fset_wf, 
fset-intersection_wf, 
all_wf, 
not_wf, 
iff_weakening_uiff, 
assert_wf, 
fset-null_wf, 
assert-fset-null, 
assert_witness, 
uiff_wf, 
deq_wf, 
member-fset-intersection, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fset-member_witness, 
empty-fset_wf, 
fset-extensionality, 
member-empty-fset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
independent_pairFormation, 
introduction, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
productEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
baseClosed, 
addLevel, 
productElimination, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
instantiate, 
isect_memberEquality, 
independent_pairEquality, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:fset(T)].
    uiff(\muparrow{}fset-disjoint(eq;as;bs);\mforall{}x:T.  (\mneg{}(x  \mmember{}  as  \mwedge{}  x  \mmember{}  bs)))
Date html generated:
2019_06_20-PM-01_59_06
Last ObjectModification:
2018_08_24-PM-11_34_40
Theory : finite!sets
Home
Index