Nuprl Lemma : assert-fset-disjoint

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:fset(T)].  uiff(↑fset-disjoint(eq;as;bs);∀x:T. (x ∈ as ∧ x ∈ bs)))


Proof




Definitions occuring in Statement :  fset-disjoint: fset-disjoint(eq;as;bs) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] fset-disjoint: fset-disjoint(eq;as;bs) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) cand: c∧ B squash: T true: True subtype_rel: A ⊆B guard: {T} fset-member: a ∈ s assert: b ifthenelse: if then else fi  deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: bfalse: ff top: Top
Lemmas referenced :  fset-member_wf equal-wf-T-base fset_wf fset-intersection_wf all_wf not_wf iff_weakening_uiff assert_wf fset-null_wf assert-fset-null assert_witness uiff_wf deq_wf member-fset-intersection squash_wf true_wf subtype_rel_self iff_weakening_equal fset-member_witness empty-fset_wf fset-extensionality member-empty-fset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut independent_pairFormation introduction lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination productEquality extract_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache baseClosed addLevel productElimination independent_isectElimination cumulativity universeEquality applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality instantiate isect_memberEquality independent_pairEquality voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:fset(T)].
    uiff(\muparrow{}fset-disjoint(eq;as;bs);\mforall{}x:T.  (\mneg{}(x  \mmember{}  as  \mwedge{}  x  \mmember{}  bs)))



Date html generated: 2019_06_20-PM-01_59_06
Last ObjectModification: 2018_08_24-PM-11_34_40

Theory : finite!sets


Home Index