Nuprl Lemma : member-empty-fset
∀[eq,x:Top].  (x ∈ {} ~ False)
Proof
Definitions occuring in Statement : 
empty-fset: {}
, 
fset-member: a ∈ s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
false: False
, 
sqequal: s ~ t
Definitions unfolded in proof : 
empty-fset: {}
, 
fset-member: a ∈ s
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
deq_member_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[eq,x:Top].    (x  \mmember{}  \{\}  \msim{}  False)
Date html generated:
2017_02_20-AM-10_49_12
Last ObjectModification:
2017_02_03-AM-11_02_01
Theory : finite!sets
Home
Index