Nuprl Lemma : member-fset-intersection
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:fset(T)]. ∀[x:T].  uiff(x ∈ a ⋂ b;x ∈ a ∧ x ∈ b)
Proof
Definitions occuring in Statement : 
fset-intersection: a ⋂ b
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
fset-intersection: a ⋂ b
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assert-deq-fset-member, 
fset-member_witness, 
and_wf, 
fset-member_wf, 
assert_wf, 
deq-fset-member_wf, 
assert_witness, 
uiff_wf, 
iff_weakening_uiff, 
fset-filter_wf, 
guard_wf, 
member-fset-filter, 
fset-intersection_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
independent_pairEquality, 
independent_functionElimination, 
cumulativity, 
lambdaEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(T)].  \mforall{}[x:T].    uiff(x  \mmember{}  a  \mcap{}  b;x  \mmember{}  a  \mwedge{}  x  \mmember{}  b)
Date html generated:
2016_05_14-PM-03_40_04
Last ObjectModification:
2015_12_26-PM-06_41_27
Theory : finite!sets
Home
Index