Nuprl Lemma : irr-face-morph_wf

[I:fset(ℕ)]. ∀[as,bs:fset(names(I))].  (irr-face-morph(I;as;bs) ∈ I ⟶ I)


Proof




Definitions occuring in Statement :  irr-face-morph: irr-face-morph(I;as;bs) names-hom: I ⟶ J names: names(I) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T irr-face-morph: irr-face-morph(I;as;bs) names-hom: I ⟶ J all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  deq-fset-member_wf names_wf names-deq_wf bool_wf eqtt_to_assert dM0_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot dM1_wf dM_inc_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].    (irr-face-morph(I;as;bs)  \mmember{}  I  {}\mrightarrow{}  I)



Date html generated: 2017_10_05-AM-01_15_02
Last ObjectModification: 2017_03_02-PM-10_29_47

Theory : cubical!type!theory


Home Index