Nuprl Lemma : irr_face_wf
∀[I:fset(ℕ)]. ∀[as,bs:fset(names(I))].  (irr_face(I;as;bs) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
irr_face: irr_face(I;as;bs)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
irr_face: irr_face(I;as;bs)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
lattice-fset-meet_wf, 
face_lattice_wf, 
decidable__equal_face_lattice, 
lattice-point_wf, 
fset-union_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
face_lattice-deq_wf, 
fset-image_wf, 
names_wf, 
names-deq_wf, 
fl0_wf, 
fl1_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].    (irr\_face(I;as;bs)  \mmember{}  Point(face\_lattice(I)))
Date html generated:
2017_02_21-AM-10_32_57
Last ObjectModification:
2017_02_02-PM-03_08_32
Theory : cubical!type!theory
Home
Index