Nuprl Lemma : irr_face_wf

[I:fset(ℕ)]. ∀[as,bs:fset(names(I))].  (irr_face(I;as;bs) ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  irr_face: irr_face(I;as;bs) face_lattice: face_lattice(I) names: names(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T irr_face: irr_face(I;as;bs) subtype_rel: A ⊆B implies:  Q all: x:A. B[x] bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  lattice-fset-meet_wf face_lattice_wf decidable__equal_face_lattice lattice-point_wf fset-union_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf face_lattice-deq_wf fset-image_wf names_wf names-deq_wf fl0_wf fl1_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache independent_functionElimination lambdaFormation dependent_functionElimination instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].    (irr\_face(I;as;bs)  \mmember{}  Point(face\_lattice(I)))



Date html generated: 2017_02_21-AM-10_32_57
Last ObjectModification: 2017_02_02-PM-03_08_32

Theory : cubical!type!theory


Home Index