Nuprl Lemma : extend-face-term-property

[I:fset(ℕ)]. ∀[phi:𝔽(I)]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[J:fset(ℕ)]. ∀[g:I,phi(J)].
  ((extend-face-term(I;phi;u))<g> u(g) ∈ Point(face_lattice(J)))


Proof




Definitions occuring in Statement :  extend-face-term: extend-face-term(I;phi;u) face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-subset: I,psi face-presheaf: 𝔽 fl-morph: <f> face_lattice: face_lattice(I) I_cube: A(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-subset: I,psi cube-cat: CubeCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) all: x:A. B[x] top: Top extend-face-term: extend-face-term(I;phi;u) subtype_rel: A ⊆B I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a pi2: snd(t) implies:  Q guard: {T} cat-arrow: cat-arrow(C) names-hom: I ⟶ J uiff: uiff(P;Q) exists: x:A. B[x] cand: c∧ B squash: T name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True iff: ⇐⇒ Q cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) rev_implies:  Q bdd-lattice: BoundedLattice cubical-term: {X ⊢ _:A} cubical-term-at: u(a) sq_stable: SqStable(P) lattice-le: a ≤ b label: ...$L... t nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g cat-comp: cat-comp(C) order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  I_cube_pair_redex_lemma cat_arrow_triple_lemma face_lattice_components_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf set_wf fset_wf names_wf assert_wf fset-disjoint_wf names-deq_wf lattice-fset-join_wf decidable__equal_face_lattice fset-image_wf product-deq_wf deq-fset_wf strong-subtype-deq-subtype pi1_wf_top pi2_wf strong-subtype-set2 face_lattice-deq_wf irr_face_wf fset-subtype2 fset-member_wf I_cube_wf cubical-subset_wf nat_wf cubical-term_wf face-type_wf face-presheaf_wf small_cubical_set_subtype name-morph-satisfies_wf names-hom_wf irr-face-morph_wf irr-face-morph-satisfies lattice-le_wf lattice-fset-join-is-lub bdd-distributive-lattice-subtype-bdd-lattice subtype_rel_product top_wf member-fset-image-iff fl-morph_wf lattice-hom-le squash_wf true_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf iff_weakening_equal lattice-1-le-iff lattice-hom-fset-join cubical-term-at_wf and_wf strong-subtype-set3 subtype_rel_nested_set2 all_wf decidable_wf bdd-lattice_wf name-morph-satisfies-fset-join cubical-type-at_wf_face-type lattice-hom_wf lattice-0_wf lattice-1_wf face-type-at lattice-hom-meet irr-face-morph-property lattice-1-meet nh-comp_wf face-type-ap-morph cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma cubical-subset-restriction sq_stable__equal face_lattice-le lattice-meet-eq-1 fl-morph-comp2 cubical-subset-I_cube-member implies-nh-comp-satisfies cubical-type_wf cubical_set_wf nh-comp-assoc lattice-le-order bdd-distributive-lattice-subtype-lattice
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule extract_by_obid dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename hypothesisEquality applyEquality isectElimination instantiate lambdaEquality productEquality cumulativity because_Cache independent_isectElimination setEquality productElimination independent_functionElimination lambdaFormation independent_pairEquality equalityTransitivity equalitySymmetry axiomEquality dependent_set_memberEquality hyp_replacement applyLambdaEquality dependent_pairFormation independent_pairFormation imageMemberEquality baseClosed imageElimination natural_numberEquality universeEquality functionEquality equalityUniverse levelHypothesis

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:I,phi(J)].
    ((extend-face-term(I;phi;u))<g>  =  u(g))



Date html generated: 2018_05_23-AM-11_12_29
Last ObjectModification: 2018_04_09-PM-07_20_54

Theory : cubical!type!theory


Home Index