Nuprl Lemma : extend-face-term-property
∀[I:fset(ℕ)]. ∀[phi:𝔽(I)]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[J:fset(ℕ)]. ∀[g:I,phi(J)].
  ((extend-face-term(I;phi;u))<g> = u(g) ∈ Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
extend-face-term: extend-face-term(I;phi;u)
, 
face-type: 𝔽
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
fl-morph: <f>
, 
face_lattice: face_lattice(I)
, 
I_cube: A(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-subset: I,psi
, 
cube-cat: CubeCat
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
extend-face-term: extend-face-term(I;phi;u)
, 
subtype_rel: A ⊆r B
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
pi2: snd(t)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
cat-arrow: cat-arrow(C)
, 
names-hom: I ⟶ J
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
squash: ↓T
, 
name-morph-satisfies: (psi f) = 1
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
rev_implies: P 
⇐ Q
, 
bdd-lattice: BoundedLattice
, 
cubical-term: {X ⊢ _:A}
, 
cubical-term-at: u(a)
, 
sq_stable: SqStable(P)
, 
lattice-le: a ≤ b
, 
label: ...$L... t
, 
nh-comp: g ⋅ f
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
compose: f o g
, 
cat-comp: cat-comp(C)
, 
order: Order(T;x,y.R[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
I_cube_pair_redex_lemma, 
cat_arrow_triple_lemma, 
face_lattice_components_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
set_wf, 
fset_wf, 
names_wf, 
assert_wf, 
fset-disjoint_wf, 
names-deq_wf, 
lattice-fset-join_wf, 
decidable__equal_face_lattice, 
fset-image_wf, 
product-deq_wf, 
deq-fset_wf, 
strong-subtype-deq-subtype, 
pi1_wf_top, 
pi2_wf, 
strong-subtype-set2, 
face_lattice-deq_wf, 
irr_face_wf, 
fset-subtype2, 
fset-member_wf, 
I_cube_wf, 
cubical-subset_wf, 
nat_wf, 
cubical-term_wf, 
face-type_wf, 
face-presheaf_wf, 
small_cubical_set_subtype, 
name-morph-satisfies_wf, 
names-hom_wf, 
irr-face-morph_wf, 
irr-face-morph-satisfies, 
lattice-le_wf, 
lattice-fset-join-is-lub, 
bdd-distributive-lattice-subtype-bdd-lattice, 
subtype_rel_product, 
top_wf, 
member-fset-image-iff, 
fl-morph_wf, 
lattice-hom-le, 
squash_wf, 
true_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
iff_weakening_equal, 
lattice-1-le-iff, 
lattice-hom-fset-join, 
cubical-term-at_wf, 
and_wf, 
strong-subtype-set3, 
subtype_rel_nested_set2, 
all_wf, 
decidable_wf, 
bdd-lattice_wf, 
name-morph-satisfies-fset-join, 
cubical-type-at_wf_face-type, 
lattice-hom_wf, 
lattice-0_wf, 
lattice-1_wf, 
face-type-at, 
lattice-hom-meet, 
irr-face-morph-property, 
lattice-1-meet, 
nh-comp_wf, 
face-type-ap-morph, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
cubical-subset-restriction, 
sq_stable__equal, 
face_lattice-le, 
lattice-meet-eq-1, 
fl-morph-comp2, 
cubical-subset-I_cube-member, 
implies-nh-comp-satisfies, 
cubical-type_wf, 
cubical_set_wf, 
nh-comp-assoc, 
lattice-le-order, 
bdd-distributive-lattice-subtype-lattice
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
setEquality, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
natural_numberEquality, 
universeEquality, 
functionEquality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:I,phi(J)].
    ((extend-face-term(I;phi;u))<g>  =  u(g))
Date html generated:
2018_05_23-AM-11_12_29
Last ObjectModification:
2018_04_09-PM-07_20_54
Theory : cubical!type!theory
Home
Index