Nuprl Lemma : irr-face-morph-property

[I:fset(ℕ)]. ∀[as,bs:fset(names(I))]. ∀[J:fset(ℕ)]. ∀[g:J ⟶ I].
  ((irr_face(I;as;bs) g)  (g irr-face-morph(I;as;bs) ⋅ g ∈ J ⟶ I))


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 irr-face-morph: irr-face-morph(I;as;bs) irr_face: irr_face(I;as;bs) nh-comp: g ⋅ f names-hom: I ⟶ J names: names(I) fset: fset(T) nat: uall: [x:A]. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a names-hom: I ⟶ J compose: g irr-face-morph: irr-face-morph(I;as;bs) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q prop: squash: T subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] true: True
Lemmas referenced :  satisfies-irr-face nh-comp-sq deq-fset-member_wf names_wf names-deq_wf eqtt_to_assert assert-deq-fset-member eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf fset-member_wf dM-lift-inc name-morph-satisfies_wf irr_face_wf names-hom_wf fset_wf nat_wf equal_wf squash_wf true_wf istype-universe lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift_wf2 dM0_wf subtype_rel_self iff_weakening_equal dM-lift-0 dM1_wf dM-lift-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule functionExtensionality Error :memTop,  inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry because_Cache dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination universeIsType lambdaEquality_alt axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies applyEquality imageElimination universeEquality productEquality isectEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].
    ((irr\_face(I;as;bs)  g)  =  1  {}\mRightarrow{}  (g  =  irr-face-morph(I;as;bs)  \mcdot{}  g))



Date html generated: 2020_05_20-PM-01_45_12
Last ObjectModification: 2019_12_27-AM-00_27_42

Theory : cubical!type!theory


Home Index