Nuprl Lemma : name-morph-satisfies-fset-join

I,J:fset(ℕ). ∀f:J ⟶ I. ∀s:fset(Point(face_lattice(I))).
  ((\/(s) f) ⇐⇒ ↓∃a:Point(face_lattice(I)). (a ∈ s ∧ (a f) 1))


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face_lattice-deq: face_lattice-deq() face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-fset-join: \/(s) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a implies:  Q guard: {T} name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) iff: ⇐⇒ Q squash: T rev_implies:  Q exists: x:A. B[x] top: Top false: False empty-fset: {} lattice-fset-join: \/(s) true: True not: ¬A fset-add: fset-add(eq;x;s) or: P ∨ Q uiff: uiff(P;Q) fl-join: fl-join(I;x;y) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 cand: c∧ B decidable: Dec(P)
Lemmas referenced :  fset-induction lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf face_lattice-deq_wf iff_wf name-morph-satisfies_wf lattice-fset-join_wf decidable__equal_face_lattice squash_wf exists_wf fset-member_wf fset_wf names-hom_wf nat_wf sq_stable__iff fl-morph_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-1_wf sq_stable__equal sq_stable__squash empty-fset_wf member-empty-fset reduce_nil_lemma true_wf fl-morph-0 lattice-0_wf iff_weakening_equal face-lattice-0-not-1 fset-add_wf not_wf fset-union_wf fset-singleton_wf or_wf iff_functionality_wrt_iff lattice-fset-join-union member-fset-union lattice-fset-join-singleton member-fset-singleton name-morph-satisfies-join fl-join_wf subtype_rel_self names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf deq-implies and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination setElimination rename independent_pairFormation imageElimination imageMemberEquality baseClosed productElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis natural_numberEquality hyp_replacement applyLambdaEquality isect_memberFormation independent_pairEquality axiomEquality existsFunctionality andLevelFunctionality orFunctionality addLevel impliesFunctionality setEquality unionEquality unionElimination dependent_pairFormation inlFormation inrFormation dependent_set_memberEquality

Latex:
\mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}s:fset(Point(face\_lattice(I))).
    ((\mbackslash{}/(s)  f)  =  1  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}a:Point(face\_lattice(I)).  (a  \mmember{}  s  \mwedge{}  (a  f)  =  1))



Date html generated: 2017_10_05-AM-01_17_49
Last ObjectModification: 2017_03_02-PM-10_33_43

Theory : cubical!type!theory


Home Index