Nuprl Lemma : name-morph-satisfies-join

I,J:fset(ℕ). ∀a,b:Point(face_lattice(I)). ∀f:J ⟶ I.  ((fl-join(I;a;b) f) ⇐⇒ (a f) 1 ∨ (b f) 1)


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 fl-join: fl-join(I;x;y) face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) nat: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] name-morph-satisfies: (psi f) 1 fl-join: fl-join(I;x;y) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) iff: ⇐⇒ Q implies:  Q rev_implies:  Q or: P ∨ Q squash: T guard: {T}
Lemmas referenced :  names-hom_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf lattice-1_wf bdd-distributive-lattice_wf or_wf fl-morph_wf bounded-lattice-hom_wf face_lattice-1-join-irreducible iff_wf squash_wf true_wf fl-morph-join iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination setElimination rename natural_numberEquality independent_pairFormation addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}I,J:fset(\mBbbN{}).  \mforall{}a,b:Point(face\_lattice(I)).  \mforall{}f:J  {}\mrightarrow{}  I.
    ((fl-join(I;a;b)  f)  =  1  \mLeftarrow{}{}\mRightarrow{}  (a  f)  =  1  \mvee{}  (b  f)  =  1)



Date html generated: 2017_10_05-AM-01_17_39
Last ObjectModification: 2017_07_28-AM-09_33_14

Theory : cubical!type!theory


Home Index