Nuprl Lemma : fl-morph-join

[A,B:fset(ℕ)]. ∀[g:A ⟶ B]. ∀[x,y:Point(face_lattice(B))].  ((x ∨ y)<g> (x)<g> ∨ (y)<g> ∈ Point(face_lattice(A)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-join: a ∨ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice all: x:A. B[x] implies:  Q bounded-lattice-hom: Hom(l1;l2) and: P ∧ Q lattice-hom: Hom(l1;l2) prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  fl-morph_wf bounded-lattice-hom_wf face_lattice_wf bdd-distributive-lattice_wf equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule because_Cache lambdaFormation equalitySymmetry productElimination equalityTransitivity dependent_functionElimination independent_functionElimination instantiate productEquality cumulativity universeEquality independent_isectElimination isect_memberFormation isect_memberEquality axiomEquality

Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[x,y:Point(face\_lattice(B))].    ((x  \mvee{}  y)<g>  =  (x)<g>  \mvee{}  (y)<g>)



Date html generated: 2017_10_05-AM-01_14_35
Last ObjectModification: 2017_07_28-AM-09_31_40

Theory : cubical!type!theory


Home Index