Nuprl Lemma : fl-morph-join
∀[A,B:fset(ℕ)]. ∀[g:A ⟶ B]. ∀[x,y:Point(face_lattice(B))].  ((x ∨ y)<g> = (x)<g> ∨ (y)<g> ∈ Point(face_lattice(A)))
Proof
Definitions occuring in Statement : 
fl-morph: <f>
, 
face_lattice: face_lattice(I)
, 
names-hom: I ⟶ J
, 
lattice-join: a ∨ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bounded-lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
lattice-hom: Hom(l1;l2)
, 
prop: ℙ
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
fl-morph_wf, 
bounded-lattice-hom_wf, 
face_lattice_wf, 
bdd-distributive-lattice_wf, 
equal_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
names-hom_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
lambdaFormation, 
equalitySymmetry, 
productElimination, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[x,y:Point(face\_lattice(B))].    ((x  \mvee{}  y)<g>  =  (x)<g>  \mvee{}  (y)<g>)
Date html generated:
2017_10_05-AM-01_14_35
Last ObjectModification:
2017_07_28-AM-09_31_40
Theory : cubical!type!theory
Home
Index