Nuprl Lemma : face_lattice-1-join-irreducible
∀I:fset(ℕ). ∀x,y:Point(face_lattice(I)).
  (x ∨ y = 1 ∈ Point(face_lattice(I)) 
⇐⇒ (x = 1 ∈ Point(face_lattice(I))) ∨ (y = 1 ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
face_lattice: face_lattice(I)
, 
lattice-1: 1
, 
lattice-join: a ∨ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
face_lattice: face_lattice(I)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
or_wf, 
equal_wf, 
lattice-point_wf, 
face-lattice_wf, 
names_wf, 
names-deq_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
face-lattice-1-join-irreducible, 
iff_wf, 
face_lattice_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
setElimination, 
rename, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}x,y:Point(face\_lattice(I)).    (x  \mvee{}  y  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (y  =  1))
Date html generated:
2017_10_05-AM-01_10_05
Last ObjectModification:
2017_07_28-AM-09_29_41
Theory : cubical!type!theory
Home
Index