Nuprl Lemma : fl-join_wf

[I:fset(ℕ)]. ∀[x,y:𝔽(I)].  (fl-join(I;x;y) ∈ 𝔽(I))


Proof




Definitions occuring in Statement :  fl-join: fl-join(I;x;y) face-presheaf: 𝔽 I_cube: A(I) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-presheaf: 𝔽 I_cube: A(I) functor-ob: functor-ob(F) pi1: fst(t) fl-join: fl-join(I;x;y) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  I_cube_wf face-presheaf_wf fset_wf nat_wf lattice-join_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x,y:\mBbbF{}(I)].    (fl-join(I;x;y)  \mmember{}  \mBbbF{}(I))



Date html generated: 2016_05_18-PM-00_16_35
Last ObjectModification: 2015_12_28-PM-03_00_11

Theory : cubical!type!theory


Home Index