Nuprl Lemma : fl-join_wf
∀[I:fset(ℕ)]. ∀[x,y:𝔽(I)].  (fl-join(I;x;y) ∈ 𝔽(I))
Proof
Definitions occuring in Statement : 
fl-join: fl-join(I;x;y)
, 
face-presheaf: 𝔽
, 
I_cube: A(I)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-presheaf: 𝔽
, 
I_cube: A(I)
, 
functor-ob: functor-ob(F)
, 
pi1: fst(t)
, 
fl-join: fl-join(I;x;y)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
I_cube_wf, 
face-presheaf_wf, 
fset_wf, 
nat_wf, 
lattice-join_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x,y:\mBbbF{}(I)].    (fl-join(I;x;y)  \mmember{}  \mBbbF{}(I))
Date html generated:
2016_05_18-PM-00_16_35
Last ObjectModification:
2015_12_28-PM-03_00_11
Theory : cubical!type!theory
Home
Index