Nuprl Lemma : fl-morph-0

[A,B:fset(ℕ)]. ∀[g:A ⟶ B].  ((0)<g> 0 ∈ Point(face_lattice(A)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  face-lattice-property free-dist-lattice-with-constraints-property lattice-0_wf face_lattice_wf bdd-distributive-lattice_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].    ((0)<g>  =  0)



Date html generated: 2016_05_18-PM-00_15_59
Last ObjectModification: 2015_12_28-PM-03_00_16

Theory : cubical!type!theory


Home Index