Nuprl Lemma : implies-nh-comp-satisfies
∀[I,J,K:fset(ℕ)]. ∀[psi:Point(face_lattice(I))]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J].  (psi f ⋅ g) = 1 supposing (psi f) = 1
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1
, 
face_lattice: face_lattice(I)
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
name-morph-satisfies: (psi f) = 1
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
name-morph-satisfies_wf, 
names-hom_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
squash_wf, 
true_wf, 
fl-morph-comp, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
iff_weakening_equal, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
fl-morph-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
imageElimination, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[psi:Point(face\_lattice(I))].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].
    (psi  f  \mcdot{}  g)  =  1  supposing  (psi  f)  =  1
Date html generated:
2017_10_05-AM-01_17_32
Last ObjectModification:
2017_07_28-AM-09_33_10
Theory : cubical!type!theory
Home
Index