Nuprl Lemma : implies-nh-comp-satisfies

[I,J,K:fset(ℕ)]. ∀[psi:Point(face_lattice(I))]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J].  (psi f ⋅ g) supposing (psi f) 1


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face_lattice: face_lattice(I) nh-comp: g ⋅ f names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a name-morph-satisfies: (psi f) 1 prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q compose: g bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  name-morph-satisfies_wf names-hom_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf squash_wf true_wf fl-morph-comp lattice-1_wf bdd-distributive-lattice_wf iff_weakening_equal fl-morph_wf bounded-lattice-hom_wf fl-morph-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule axiomEquality hypothesis extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination imageElimination setElimination rename natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[psi:Point(face\_lattice(I))].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].
    (psi  f  \mcdot{}  g)  =  1  supposing  (psi  f)  =  1



Date html generated: 2017_10_05-AM-01_17_32
Last ObjectModification: 2017_07_28-AM-09_33_10

Theory : cubical!type!theory


Home Index