Nuprl Lemma : product-deq_wf
∀[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)].  (product-deq(A;B;a;b) ∈ EqDecider(A × B))
Proof
Definitions occuring in Statement : 
product-deq: product-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
deq: EqDecider(T)
, 
product-deq: product-deq(A;B;a;b)
, 
proddeq: proddeq(a;b)
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
eqof: eqof(d)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
istype-universe, 
assert_wf, 
deq_wf, 
eqof_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
equal_wf, 
bfalse_wf, 
iff_transitivity, 
assert_of_band
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaEquality_alt, 
because_Cache, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :productIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
Error :lambdaFormation_alt, 
productElimination, 
Error :functionIsType, 
Error :equalityIsType1, 
Error :universeIsType, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
universeEquality, 
independent_pairFormation, 
applyLambdaEquality, 
independent_pairEquality, 
unionElimination, 
equalityElimination, 
setElimination, 
rename, 
independent_isectElimination, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
productEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].    (product-deq(A;B;a;b)  \mmember{}  EqDecider(A  \mtimes{}  B))
Date html generated:
2019_06_20-PM-00_32_01
Last ObjectModification:
2018_10_06-AM-11_20_17
Theory : equality!deciders
Home
Index