Nuprl Lemma : product-deq_wf

[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)].  (product-deq(A;B;a;b) ∈ EqDecider(A × B))


Proof




Definitions occuring in Statement :  product-deq: product-deq(A;B;a;b) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T) product-deq: product-deq(A;B;a;b) proddeq: proddeq(a;b) all: x:A. B[x] pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt eqof: eqof(d) uiff: uiff(P;Q) uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  istype-universe assert_wf deq_wf eqof_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff equal_wf bfalse_wf iff_transitivity assert_of_band
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :dependent_set_memberEquality_alt,  Error :lambdaEquality_alt,  because_Cache Error :inhabitedIsType,  hypothesisEquality Error :productIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :lambdaFormation_alt,  productElimination Error :functionIsType,  Error :equalityIsType1,  Error :universeIsType,  applyEquality axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  universeEquality independent_pairFormation applyLambdaEquality independent_pairEquality unionElimination equalityElimination setElimination rename independent_isectElimination Error :dependent_pairFormation_alt,  promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination productEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].    (product-deq(A;B;a;b)  \mmember{}  EqDecider(A  \mtimes{}  B))



Date html generated: 2019_06_20-PM-00_32_01
Last ObjectModification: 2018_10_06-AM-11_20_17

Theory : equality!deciders


Home Index