Nuprl Lemma : face_lattice_components_wf
∀I:fset(ℕ). ∀x:Point(face_lattice(I)).
  (face_lattice_components(I;x) ∈ {fs:fset({p:fset(names(I)) × fset(names(I))| ↑fset-disjoint(NamesDeq;fst(p);snd(p))} )\000C| 
                                   x = \/(λpr.irr_face(I;fst(pr);snd(pr))"(fs)) ∈ Point(face_lattice(I))} )
Proof
Definitions occuring in Statement : 
face_lattice_components: face_lattice_components(I;x), 
irr_face: irr_face(I;as;bs), 
face_lattice-deq: face_lattice-deq(), 
face_lattice: face_lattice(I), 
names-deq: NamesDeq, 
names: names(I), 
lattice-fset-join: \/(s), 
lattice-point: Point(l), 
fset-image: f"(s), 
deq-fset: deq-fset(eq), 
fset-disjoint: fset-disjoint(eq;as;bs), 
fset: fset(T), 
product-deq: product-deq(A;B;a;b), 
nat: ℕ, 
assert: ↑b, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
product: x:A × B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
face_lattice: face_lattice(I), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
face_lattice-deq: face_lattice-deq(), 
union-deq: union-deq(A;B;a;b), 
face-lattice0: (x=0), 
fl0: (x=0), 
face-lattice1: (x=1), 
fl1: (x=1), 
top: Top, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
pi1: fst(t), 
pi2: snd(t), 
outl: outl(x), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
false: False, 
outr: outr(x), 
isr: isr(x), 
uiff: uiff(P;Q), 
not: ¬A, 
implies: P ⇒ Q, 
squash: ↓T, 
exists: ∃x:A. B[x], 
true: True, 
btrue: tt, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
face-lattice-constraints: face-lattice-constraints(x), 
names: names(I), 
nat: ℕ, 
sq_type: SQType(T), 
f-subset: xs ⊆ ys, 
or: P ∨ Q, 
face_lattice_components: face_lattice_components(I;x), 
compose: f o g, 
irr_face: irr_face(I;as;bs), 
cand: A c∧ B, 
respects-equality: respects-equality(S;T), 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P)
Lemmas referenced : 
face-lattice-basis, 
names_wf, 
names-deq_wf, 
face_lattice-deq_wf, 
fl0_wf, 
fl1_wf, 
fl-point-sq, 
istype-void, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
fset-image_wf, 
assert_wf, 
fset-contains-none_wf, 
union-deq_wf, 
face-lattice-constraints_wf, 
fset-disjoint_wf, 
deq-fset_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
product-deq_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
pi2_wf, 
fset-mapfilter_wf, 
istype-assert, 
isl_wf, 
isr_wf, 
assert-fset-disjoint, 
btrue_wf, 
bfalse_wf, 
fset-member_wf, 
member-fset-mapfilter, 
assert-fset-contains-none, 
squash_wf, 
true_wf, 
deq_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
fset-pair_wf, 
set_subtype_base, 
int-deq_wf, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
istype-nat, 
int_subtype_base, 
subtype_base_sq, 
subtype_rel_universe1, 
member-fset-singleton, 
fset-singleton_wf, 
fset-member_witness, 
member-fset-pair, 
fset-subtype2, 
subtype_rel_fset, 
fset-all-iff, 
lattice-fset-join_wf, 
decidable__equal_face_lattice, 
irr_face_wf, 
all_wf, 
decidable_wf, 
bdd-lattice_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-fset-meet_wf, 
fset-image-compose, 
fset-union_wf, 
iff_weakening_uiff, 
exists_wf, 
member-fset-image-iff, 
equal-wf-T-base, 
fset-extensionality, 
member-fset-union, 
equal-wf-base-T, 
outl_wf, 
union_subtype_base, 
respects-equality-face-lattice-point-2, 
fset-find_wf, 
fl-eq_wf, 
assert-fl-eq, 
fset-singletons-equal, 
sq_stable__fset-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
unionIsType, 
universeIsType, 
because_Cache, 
isect_memberEquality_alt, 
voidElimination, 
setElimination, 
rename, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
setEquality, 
unionEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
setIsType, 
independent_functionElimination, 
imageElimination, 
dependent_functionElimination, 
inlEquality_alt, 
hyp_replacement, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
independent_pairFormation, 
equalityIstype, 
baseApply, 
closedConclusion, 
intEquality, 
sqequalBase, 
inrEquality_alt, 
isect_memberFormation_alt, 
functionIsType, 
functionExtensionality, 
promote_hyp, 
inlFormation_alt, 
inrFormation_alt, 
isectIsTypeImplies, 
dependent_pairFormation_alt
Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}x:Point(face\_lattice(I)).
    (face\_lattice\_components(I;x)  \mmember{}  \{fs:fset(\{p:fset(names(I))  \mtimes{}  fset(names(I))| 
                                                                                        \muparrow{}fset-disjoint(NamesDeq;fst(p);snd(p))\}  )| 
                                                                      x  =  \mbackslash{}/(\mlambda{}pr.irr\_face(I;fst(pr);snd(pr))"(fs))\}  )
Date html generated:
2019_11_04-PM-05_33_14
Last ObjectModification:
2018_12_13-PM-00_50_29
Theory : cubical!type!theory
Home
Index