Nuprl Lemma : face_lattice_components_wf

I:fset(ℕ). ∀x:Point(face_lattice(I)).
  (face_lattice_components(I;x) ∈ {fs:fset({p:fset(names(I)) × fset(names(I))| ↑fset-disjoint(NamesDeq;fst(p);snd(p))} )\000C| 
                                   \/(λpr.irr_face(I;fst(pr);snd(pr))"(fs)) ∈ Point(face_lattice(I))} )


Proof




Definitions occuring in Statement :  face_lattice_components: face_lattice_components(I;x) irr_face: irr_face(I;as;bs) face_lattice-deq: face_lattice-deq() face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) lattice-fset-join: \/(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-disjoint: fset-disjoint(eq;as;bs) fset: fset(T) product-deq: product-deq(A;B;a;b) nat: assert: b pi1: fst(t) pi2: snd(t) all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  lambda: λx.A[x] product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] face_lattice: face_lattice(I) uall: [x:A]. B[x] member: t ∈ T face_lattice-deq: face_lattice-deq() union-deq: union-deq(A;B;a;b) face-lattice0: (x=0) fl0: (x=0) face-lattice1: (x=1) fl1: (x=1) top: Top subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a pi1: fst(t) pi2: snd(t) outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False outr: outr(x) isr: isr(x) uiff: uiff(P;Q) not: ¬A implies:  Q squash: T exists: x:A. B[x] true: True btrue: tt guard: {T} iff: ⇐⇒ Q rev_implies:  Q face-lattice-constraints: face-lattice-constraints(x) names: names(I) nat: sq_type: SQType(T) f-subset: xs ⊆ ys or: P ∨ Q face_lattice_components: face_lattice_components(I;x) compose: g irr_face: irr_face(I;as;bs) cand: c∧ B respects-equality: respects-equality(S;T) rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P)
Lemmas referenced :  face-lattice-basis names_wf names-deq_wf face_lattice-deq_wf fl0_wf fl1_wf fl-point-sq istype-void lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf fset-image_wf assert_wf fset-contains-none_wf union-deq_wf face-lattice-constraints_wf fset-disjoint_wf deq-fset_wf strong-subtype-deq-subtype strong-subtype-set2 product-deq_wf pi1_wf_top subtype_rel_product top_wf pi2_wf fset-mapfilter_wf istype-assert isl_wf isr_wf assert-fset-disjoint btrue_wf bfalse_wf fset-member_wf member-fset-mapfilter assert-fset-contains-none squash_wf true_wf deq_wf istype-universe subtype_rel_self iff_weakening_equal fset-pair_wf set_subtype_base int-deq_wf strong-subtype-set3 le_wf istype-int strong-subtype-self istype-nat int_subtype_base subtype_base_sq subtype_rel_universe1 member-fset-singleton fset-singleton_wf fset-member_witness member-fset-pair fset-subtype2 subtype_rel_fset fset-all-iff lattice-fset-join_wf decidable__equal_face_lattice irr_face_wf all_wf decidable_wf bdd-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-fset-meet_wf fset-image-compose fset-union_wf iff_weakening_uiff exists_wf member-fset-image-iff equal-wf-T-base fset-extensionality member-fset-union equal-wf-base-T outl_wf union_subtype_base respects-equality-face-lattice-point-2 fset-find_wf fl-eq_wf assert-fl-eq fset-singletons-equal sq_stable__fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis unionElimination unionIsType universeIsType because_Cache isect_memberEquality_alt voidElimination setElimination rename applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination productElimination setEquality unionEquality productIsType dependent_set_memberEquality_alt independent_pairEquality setIsType independent_functionElimination imageElimination dependent_functionElimination inlEquality_alt hyp_replacement universeEquality natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality independent_pairFormation equalityIstype baseApply closedConclusion intEquality sqequalBase inrEquality_alt isect_memberFormation_alt functionIsType functionExtensionality promote_hyp inlFormation_alt inrFormation_alt isectIsTypeImplies dependent_pairFormation_alt

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}x:Point(face\_lattice(I)).
    (face\_lattice\_components(I;x)  \mmember{}  \{fs:fset(\{p:fset(names(I))  \mtimes{}  fset(names(I))| 
                                                                                        \muparrow{}fset-disjoint(NamesDeq;fst(p);snd(p))\}  )| 
                                                                      x  =  \mbackslash{}/(\mlambda{}pr.irr\_face(I;fst(pr);snd(pr))"(fs))\}  )



Date html generated: 2019_11_04-PM-05_33_14
Last ObjectModification: 2018_12_13-PM-00_50_29

Theory : cubical!type!theory


Home Index