Nuprl Lemma : fset-find_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].
  (fset-find(P;s) ∈ {x:T| x ∈ s ∧ (↑(P x))} supposing 
     ((∀x,y:T.  (x ∈  y ∈  (↑(P x))  (↑(P y))  (x y ∈ T))) and 
     (↓∃x:T. (x ∈ s ∧ (↑(P x)))))


Proof




Definitions occuring in Statement :  fset-find: fset-find(P;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] and: P ∧ Q fset: fset(T) quotient: x,y:A//B[x; y] fset-find: fset-find(P;s) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q exists: x:A. B[x] fset-member: a ∈ s rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top set-equal: set-equal(T;x;y) cand: c∧ B
Lemmas referenced :  all_wf fset-member_wf assert_wf equal_wf squash_wf exists_wf fset_wf bool_wf deq_wf equal-wf-base list_wf set-equal_wf quotient-member-eq set-equal-equiv true_wf iff_weakening_equal assert-deq-member l_member_wf deq-member_wf filter_type subtype_rel_dep_function subtype_rel_self set_wf list-subtype hd_wf length-filter-pos l_exists_iff decidable__le length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtype_rel_sets
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution imageElimination hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality lambdaEquality functionEquality applyEquality functionExtensionality isect_memberEquality because_Cache productEquality universeEquality pointwiseFunctionalityForEquality setEquality pertypeElimination productElimination independent_isectElimination dependent_functionElimination independent_functionElimination addLevel existsFunctionality independent_pairFormation natural_numberEquality imageMemberEquality baseClosed promote_hyp allFunctionality lambdaFormation andLevelFunctionality setElimination rename dependent_set_memberEquality unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    (fset-find(P;s)  \mmember{}  \{x:T|  x  \mmember{}  s  \mwedge{}  (\muparrow{}(P  x))\}  )  supposing 
          ((\mforall{}x,y:T.    (x  \mmember{}  s  {}\mRightarrow{}  y  \mmember{}  s  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y))  {}\mRightarrow{}  (x  =  y)))  and 
          (\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\muparrow{}(P  x)))))



Date html generated: 2017_02_20-AM-10_49_10
Last ObjectModification: 2017_02_02-PM-05_25_18

Theory : finite!sets


Home Index