Nuprl Lemma : length-filter-pos
∀[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].  0 < ||filter(P;L)|| supposing (∃x∈L. ↑(P x))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
length: ||as||
, 
filter: filter(P;l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
top: Top
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
Lemmas referenced : 
list_induction, 
isect_wf, 
l_exists_wf, 
l_member_wf, 
assert_wf, 
less_than_wf, 
length_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
subtype_rel_self, 
set_wf, 
list_wf, 
filter_nil_lemma, 
length_of_nil_lemma, 
false_wf, 
l_exists_nil, 
l_exists_wf_nil, 
filter_cons_lemma, 
eqtt_to_assert, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
or_wf, 
true_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
l_exists_cons, 
cons_wf, 
ifthenelse_wf, 
member-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
productElimination, 
isectEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
instantiate, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    0  <  ||filter(P;L)||  supposing  (\mexists{}x\mmember{}L.  \muparrow{}(P  x))
Date html generated:
2017_04_17-AM-07_48_04
Last ObjectModification:
2017_02_27-PM-04_22_20
Theory : list_1
Home
Index