Nuprl Lemma : length-filter-pos

[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].  0 < ||filter(P;L)|| supposing (∃x∈L. ↑(P x))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) length: ||as|| filter: filter(P;l) list: List assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] prop: so_apply: x[s] subtype_rel: A ⊆B implies:  Q top: Top false: False iff: ⇐⇒ Q and: P ∧ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A bfalse: ff sq_type: SQType(T) bnot: ¬bb
Lemmas referenced :  list_induction isect_wf l_exists_wf l_member_wf assert_wf less_than_wf length_wf filter_wf5 subtype_rel_dep_function bool_wf subtype_rel_self set_wf list_wf filter_nil_lemma length_of_nil_lemma false_wf l_exists_nil l_exists_wf_nil filter_cons_lemma eqtt_to_assert length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf or_wf true_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot l_exists_cons cons_wf ifthenelse_wf member-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity lambdaFormation hypothesis setElimination rename applyEquality functionExtensionality because_Cache setEquality natural_numberEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality addLevel productElimination isectEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_pairFormation int_eqEquality intEquality computeAll instantiate functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    0  <  ||filter(P;L)||  supposing  (\mexists{}x\mmember{}L.  \muparrow{}(P  x))



Date html generated: 2017_04_17-AM-07_48_04
Last ObjectModification: 2017_02_27-PM-04_22_20

Theory : list_1


Home Index