Nuprl Lemma : fset-singletons-equal

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  uiff({x} {y} ∈ fset(T);x y ∈ T)


Proof




Definitions occuring in Statement :  fset-singleton: {x} fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop:
Lemmas referenced :  equal_wf fset_wf fset-singleton_wf and_wf deq_wf member-fset-singleton fset-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality equalitySymmetry dependent_set_memberEquality applyEquality lambdaEquality setElimination rename productElimination setEquality sqequalRule independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity independent_isectElimination hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].    uiff(\{x\}  =  \{y\};x  =  y)



Date html generated: 2016_10_21-AM-10_44_10
Last ObjectModification: 2016_07_12-AM-05_51_01

Theory : finite!sets


Home Index