Nuprl Lemma : subtype_rel_fset

[A,B:Type].  fset(A) ⊆fset(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  fset: fset(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  fset-subtype subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    fset(A)  \msubseteq{}r  fset(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_14-PM-03_37_59
Last ObjectModification: 2015_12_26-PM-06_42_20

Theory : finite!sets


Home Index