Step
*
3
of Lemma
face-forall-implies-1
1. H : CubicalSet{j}
2. phi : {H.𝕀 ⊢ _:𝔽}
3. X : Top
4. I : fset(ℕ)
5. rho : H(I)
6. (∀ phi)(rho) = 1 ∈ Point(face_lattice(I))
7. (new-name(I)1) ∈ I ⟶ I+new-name(I)
8. <new-name(I)> ∈ 𝕀(s(rho))
9. (phi(<s(rho), <new-name(I)>>))<(new-name(I)1)> = phi(<rho, 1>) ∈ Point(face_lattice(I))
⊢ (phi)[1(𝕀)](rho) = 1 ∈ Point(face_lattice(I))
BY
{ Assert ⌜(phi(<s(rho), <new-name(I)>>))<(new-name(I)1)> = 1 ∈ Point(face_lattice(I))⌝⋅ }
1
.....assertion..... 
1. H : CubicalSet{j}
2. phi : {H.𝕀 ⊢ _:𝔽}
3. X : Top
4. I : fset(ℕ)
5. rho : H(I)
6. (∀ phi)(rho) = 1 ∈ Point(face_lattice(I))
7. (new-name(I)1) ∈ I ⟶ I+new-name(I)
8. <new-name(I)> ∈ 𝕀(s(rho))
9. (phi(<s(rho), <new-name(I)>>))<(new-name(I)1)> = phi(<rho, 1>) ∈ Point(face_lattice(I))
⊢ (phi(<s(rho), <new-name(I)>>))<(new-name(I)1)> = 1 ∈ Point(face_lattice(I))
2
1. H : CubicalSet{j}
2. phi : {H.𝕀 ⊢ _:𝔽}
3. X : Top
4. I : fset(ℕ)
5. rho : H(I)
6. (∀ phi)(rho) = 1 ∈ Point(face_lattice(I))
7. (new-name(I)1) ∈ I ⟶ I+new-name(I)
8. <new-name(I)> ∈ 𝕀(s(rho))
9. (phi(<s(rho), <new-name(I)>>))<(new-name(I)1)> = phi(<rho, 1>) ∈ Point(face_lattice(I))
10. (phi(<s(rho), <new-name(I)>>))<(new-name(I)1)> = 1 ∈ Point(face_lattice(I))
⊢ (phi)[1(𝕀)](rho) = 1 ∈ Point(face_lattice(I))
Latex:
Latex:
1.  H  :  CubicalSet\{j\}
2.  phi  :  \{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}
3.  X  :  Top
4.  I  :  fset(\mBbbN{})
5.  rho  :  H(I)
6.  (\mforall{}  phi)(rho)  =  1
7.  (new-name(I)1)  \mmember{}  I  {}\mrightarrow{}  I+new-name(I)
8.  <new-name(I)>  \mmember{}  \mBbbI{}(s(rho))
9.  (phi(<s(rho),  <new-name(I)>>))<(new-name(I)1)>  =  phi(<rho,  1>)
\mvdash{}  (phi)[1(\mBbbI{})](rho)  =  1
By
Latex:
Assert  \mkleeneopen{}(phi(<s(rho),  <new-name(I)>>))<(new-name(I)1)>  =  1\mkleeneclose{}\mcdot{}
Home
Index